| 研究生: |
李俊德 Lee, Jun-De |
|---|---|
| 論文名稱: |
設計三相升壓電路與可控換流器於自激式感應發電機之研究 Design of Three-Phase Boost Circuits and a Controllable Inverter for Self-excited Induction Generators |
| 指導教授: |
王醴
Wang, Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 141 |
| 中文關鍵詞: | 感應發電機 、功因修正電路 、數位信號控制器 |
| 外文關鍵詞: | digital signal controller, power factor correction converter, induction generator |
| 相關次數: | 點閱:124 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文發展一套自激式感應發電機之升壓式功因修正整流轉換器及可控換流器控制策略,以改善自激式感應發電機之輸出電壓及頻率會隨不同轉速及不同負載條件而發生變動的特性。
本論文所提出功率轉換器為兩級架構,利用IC UC 3854與數位信號控制器dsPIC30F4011來控制各級的功率級電晶體,三個單相升壓式功因修正電路將風力用感應發電機之交流電源轉換成穩定直流電壓,並改善發電端輸出功率因數;單相換流器則用來產生穩定交流電源輸出。
本論文利用電力電子暨馬達模擬軟體PSIM完成整體系統之模擬,並以實際電路進行測試比較,以驗證本論文所提系統之可行性,由研究結果顯示當自激式感應發電機轉速運在1300 rpm ~ 1600 rpm時,均可維持穩定的輸出電壓。
The aim of this thesis is to develop a control strategy for power-factor-correction converters and a controllable DC-to-AC inverter for a self-excited induction generator whose both output voltage and frequency are inherently affected by random wind speed and connected loads.
The proposed power converters are properly controlled using an IC UC 3854 and a digital signal controller dsPIC30F4011. Three single-phase power-factor-correction converters are connected to the self-excited induction generator to control the DC-link voltage and correct the output power factor of the self-excited induction generator. Single-phase inverter is employed to produce fixed AC voltage and frequency for the connected single-phase AC loads.
The studied system is simulated by PSIM and the simulated results are validated by experimental tests. The results show that the stable output voltage can be maintained when the speed of the studied self-excited induction generator is varied from 1300 rpm to 1600 rpm.
[1] S. R. Silva and R. O. Lyra, “PWM converter for excitation of wind induction generators,” Fifth European Conference on Power Electronics and Applications, vol. 8, September 1993, pp. 174-178.
[2] R. M. Hilloowala and A. M. Sharaf, “A rule-based fuzzy logic controller for a PWM inverter in a stand alone wind energy conversion scheme,” IEEE Transactions on Industry Applications, vol. 32, January/Feburary 1996, pp. 57-65.
[3] Z. Chen, “Compensation Schemes for a SCR Converter in variable Speed Wind Power Systems,” IEEE Transactions on Power Apparatus and Systems, vol. 19, no. 2, April 2004, pp. 813-821.
[4] F. R. Teodorescu and F. Blaabjerg, “Flexible control of small wind turbines with grid failure detection operating in stand-alone and grid-connected mode,” IEEE Transactions on Power Electronics, vol. 19, no. 5, September 2004, pp. 1323-1332.
[5] Y. Nishida and M. Nakaoka, “Simplified predictive instantaneous current control for single-phase and three-phase and three-phase voltage-fed PFC converters,” IEE Proceedings-Generations Electric Power Applications, vol. 144, no. 1, January 1997, pp. 46-52.
[6] B. S. Lee, H. Jaehong, P. N. Enjeti, and I. J. Pitel, “A robust three-phase active power-factor-correction and harmonic reduction scheme for high power,” IEEE Transactions on Industrial Electronics, vol. 46, June 1999, pp. 483-494.
[7] J. Y. Lee, Y. M. Chang, and F. Y. Liu, “A new UPS topology employing a PFC boost rectifier cascaded high-frequency tri-port converter,” IEEE Transactions on Industrial Electronics, vol. 46, no. 4, August 1999, pp. 803-813.
[8] R. Gules, I. Barbi, and E. M. Simoes, “A 1.2 kW electronic ballast for multiple lamps, with dimming capability and high-power-factor,” Applied Power Electronics Conference and Exposition, vol. 2, March 1999, pp. 720-726.
[9] H. A. C. Braga and I. Barbi, “A 3-kW unity-power-factor rectifier based on a two-cell boost converter using a new parallel-connection technique,” IEEE Transactions on Power Electronics, vol. 14, no. 1, January 1999, pp. 209-216.
[10] Y. K. E. Ho, S. Y. R. Hui, and Y. S. Lee, “Characterization of single-stage three-phase power-factor-correction circuit using modular single-phase PWM DC-to-DC converters,” IEEE Transactions on Power Electronics, vol. 15, January 2000, pp. 62-71.
[11] S. Mobin, E. Hiraki, H. Takano, and M. Nakaoka, “Simulation method for DSP-controlled active PFC high frequency power converters,” IEE Proceedings-Generations Electric Power Applications, vol. 147, no. 3, May 2000, pp. 159-166.
[12] K. C. Lee, H. S. Chei, and B. H. Cho, “Power factor correction converter using delay control,” IEEE Transactions on Power Electronics, vol. 15, no. 4, July 2000, pp. 626-633.
[13] Y. K. Lo, S. Y. Ou, and H. J. Chiu, “Coupling analysis of a three-phase power-factor corrector composed of three single-phase modules,” IEEE Transactions on Industrial Electronics, vol. 48, no. 6, December 2001, pp. 1285-1288.
[14] T. Jin, L. Li, and K. Smedley, “A universal vector controller for three-phase PFC, APF, STATCOM, and grid-connected inverter,” IEEE Applied Power Electronics Conference and Exposition, vol. 1, February 2004, pp. 1-23.
[15] J. Zhou, Z. Lu, Z. Lin, Y. Ren, Z. Qian, and Y. Wang, “Novel sampling algorithm for DSP controlled 2 kW PFC converter,” IEEE Transactions on Power Electronics, vol. 16, no. 2, March 2001, pp. 217-222.
[16] J. Rodríguez, J. Dixon, J. Espinoza, and P. Lezana, “PWM regenerative rectifiers: State of the art,” IEEE Transactions on Industrial Electronics, vol. 52, no. 1, February 2005, pp. 5-22.
[17] K. D. Gussemé, W. R. Ryckaert, D. M. V. Sype, J. A. Ghijselen, J. A. Melkebeek, and L. Vandevelde, “A boost PFC converter with programmable harmonic resistance,” IEEE Transactions on Industry Applications, vol. 43, no. 3, May/June 2007, pp. 742-750.
[18] C. M. Wang, “A novel single-switch single-stage electronic ballast with high input power factor,” IEEE Transactions on Power Electronics, vol. 22, no. 3, May 2007, pp. 797-803.
[19] K. P. Louganski and J. S. Lai, “Current phase lead compensation in single-phase PFC boost converters with a reduced switching frequency to line frequency ratio,” IEEE Transactions on Power Electronics, vol. 22, no. 1, January 2007, pp. 113-119.
[20] T. Jin, L. Li, and K. M. Smedley, “A universal vector controller for four-quadrant three-phase power converters,” IEEE Transactions on Circuits and Ststems—I: Regular Papers, vol. 54, no. 2, February 2007, pp. 377-390.
[21] A. Lázaro, A. Barrado, M. Sanz, V. Salas, and E. Olías, “New power factor correction AC-DC converter with reduced storage capacitor voltage,” IEEE Transactions on Industrial Electronics, vol. 54, no. 1, February 2007, pp. 384-397.
[22] 李東璟,以數位信號處理器完成風力用獨立自激式感應發電機可控整流器與切換自激電容器組之協調控制研究,國立成功大學電機工程研究所碩士論文,民國九十三年六月。
[23] 洪瑞鴻,2 kW功率因數修正器研製,國立台灣科技大學電機工程研究所碩士論文,民國九十四年七月。
[24] 鄭凱方,主動式功因修正電路模型建立與設計,國立中山大學電機工程研究所碩士論文,民國九十四年七月。
[25] 林祐任,協調可控整流器與可控換流器於風力用發電機之控制,國立成功大學電機工程研究所碩士論文,民國九十五年六月。
[26] 魏貞元,永磁同步發電機功率控制器之研製與模擬,國立成功大學電機工程研究所碩士論文,民國九十六年六月。
[27] 曾百由,dsPIC數位訊號控制器原理與應用MPLAB C30開發實務,宏友圖書開發股份有限公司,民國九十五年。
[28] 翁萬德,台灣地區風力時序長程機率模型之建立及風力發電可行性之分析,行政院國家科學委員會88年度電力科技產業學術合作研究計畫成果報告,民國88年7月。
[29] dsPIC30F4011/4012 Data Sheet, 70135E.pdf, from the World Wide Web:http://ww1.microchip.com/downloads/en/DeviceDoc/70135E.pdf.
[30] MPLAB IDE User’s Guide, 51519B.pdf, from the World Wide Web:http://ww1.microchip.com/downloads/en/DeviceDoc/51519B.pdf.
[31] dsPIC30F Reference Manual Chinese, 70157b_cn.pdf, from the World Wide Web:http://ww1.microchip.com/downloads/en/DeviceDo c/70157b_cn.pdf.
[32] dsPIC C 30語言入門, 70094c_cn.pdf from the World Wide Web: http://ww1.microchip.com/downloads/en/DeviceDoc/70094c_cn.pdf.
[33] MPLAB C30 Compiler User’s Guide , 51284e.pdf, from the World WideWeb:http://ww1.microchip.com/downloads/en/DeviceDoc/C30_Users_Guide_51284e.pdf.
[34] 張義和,“Protel DXP 電腦輔助電路設計快速入門,” 全華科技圖書股份有限公司,民國九十二年二月。
[35] Philip C. Todd, “UC3854 Controlled Power Factor Correction Circuit Design Application Note,” Texas Instruments, 1999.
[36] Abraham I. Pressman, Switching Power Supply Design, New York: McGraw-Hill Book Company, 1998.
[37] Muhammad H. Rashid, Power Electronics Circuits, Devices, and Applications, Peaeson Prentice Hall, 2004.