簡易檢索 / 詳目顯示

研究生: 黃舜治
Huang, Shuen-Jr
論文名稱: 無鉛覆晶球柵陣列結合體之疲勞分析
Fatigue Analysis for Free-Lead Flip-Chip Ball Grid Array Assembly
指導教授: 吳俊煌
Wu, Jiun-Huang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 54
中文關鍵詞: 覆晶封裝無鉛銲錫有限元素分析
外文關鍵詞: FCBGA, finite element, lead-free solder ball, accelerated thermal cycling loading, fatigue life
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要利用ANSYS有線元素分析軟體模擬分析負晶封裝體FCBGA在溫度循環負載其無鉛錫球的機械行為及壽命比較。
    首先建立模型並設定各材料參數,再以Anand model描述錫球的行為,進行網格化進行溫度負載模擬分析,將所得結果搭配Coffin-Manson equation 計算疲勞壽命並比較差異及優劣。
    本文主要探討材料均為無鉛銲錫,所有組合包括兩種無鉛材料及三種組合體,首先比較兩種材料分別在各組合體的應力及應變分布,再針對單一材料在不同組合體進行模擬,最後總結並計算比較壽命,分析材料及組合體對壽命所帶來的效益。

    This paper uses finite element software ANSYS14.0 to analyze the Flip-Chip Ball Grid Array packaging (FCBGA) under accelerated thermal cycling loading, we observe the thermal and mechanical behaviors of the solder balls and compare their fatigue life.

    First we have to use ANSYS to establish the model of FCBGA and set up the material parameters, than describe solder ball's mechanical behaviors with Anand model, after that, mesh the model and analyze it by accelerated thermal cycling loading, finally we use Coffin-Manson equation to calculate solder balls fatigue life.

    We use two lead-free materials and three type of models, first compare the mechanical behaviors of the same materials' solder ball in different types, than compare the mechanical behaviors of the different materials' solder ball in same types, eventually calculate the fatigue life and investigate the effect of solder ball with different material and model.

    摘要 I EXTEND ABSTRCT II 誌謝 VIII 目錄 IX 表目錄 XI 圖目錄 XII 第一章 緒論 1 1.1前言 1 1.2 FC-BGA簡介 1 1.2.1 BGA 1 1.2.2 FC 2 1.3 研究動機與目的 3 1.4 文獻回顧 3 1.5 本文架構 4 第二章 理論基礎 5 2.1材料機械性質 5 2.2 應力與應變關係 5 2.2.1 虎克定律 5 2.2.2 彈性及塑性應變 7 2.2.3降伏 8 2.3 潛變 9 2.4 Anand model 10 2.5 疲勞 12 2.5.1 加速溫度循環 12 2.5.2 Coffin-Manson Model 13 第三章 模型建立與有限元素分析 14 3.1 假設條件 14 3.2 模型建立 15 3.3前處理(Pre-Processing) 15 3.3.1 建立實體模型 16 3.3.2定義模型及元件 23 3.3.3 各元件材料性質 23 3.3.4 分析元素型式 25 3.3.5 網格劃分 27 3.4 求解(Solver) 31 3.4.1 邊界條件 31 3.4.2 負載設定 32 3.4.3 進行求解 33 3.5 後處理(Post-processing) 33 第四章 結果與討論 34 4.1 錫球分析結果 34 4.1.1 應力與應變分布 34 4.1.2 負載過程之變化 37 4.2 參數設計 38 4.2.1 第二型組合體 38 4.2.2 第三型組合體 42 4.2.3 組合體比較 46 4.3 疲勞壽命估算 48 第五章 結論與未來展望 50 5.1 結論 50 5.2 未來展望 51 文獻回顧 52

    [1]Cai, Z. , Suhling, J.C. , " Determination of Anand constants for SAC solders using stress-strain or creep data", Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2012 13th IEEE Intersociety Conference on May 30 2012-June 1 2012.
    [2] S. C. Tseng , R. S. Chen , C. C. Lio , "Stress analysis of lead-free solders with under bump metallurgy in a wafer level chip scale package", The International Journal of Advanced Manufacturing TechnologyNovember 2006, Volume 31, Issue 1-2, pp 1-9.
    [3] Zane E. Johnson , "A Compilation of Anand Parameters for Selected SnPb and Pb-free Solder Alloys",
    [4] Chen Xiangyang , Zhou Dejian , "Modeling and Reliability Analysis of Lead-Free Solder Joints of Bottom Leaded Plastic(BLP) Package", High Density Microsystem Design and Packaging and Component Failure Analysis, 2006. HDP'06. Conference on27-28 June 2006.
    [5] J. H. Lau , "Ball Grid Technology", McGraw-Hill, New York, 1995.
    [6] L. Anand,“Constitutive Equation for The Rate-Dependent Deformation of Metals at Elevated Temperature”, Transactions of The ASME, Vol.104, pp.12-17, 1982.
    [7] B. Rodgers,B. Flood, J. Punch,F. Waldron, “ExperimentalDeterminatioioandFiniteElementModelValidationoftheAnandViscoplasticityModelConstantsforSnAgCu”, IEEE Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems, pp. 490 – 496, 2005.
    [8] H. Cui ,"Accelerated Temperature Cycle Test and Coffin-Manson Model
    for Electronic Packaging," in Proc. Reliability Maintainability Symp.,
    Jan 24–27, 2005, pp. 556–560.
    [9] L.F. Coffin, Jr., “A Study of the Effects of Cyclic Thermal Stress on a Ductile Metal,” Trans. ASME, Vol. 76, pp. 931-950, 1954.
    [10] S.S. Manson, “Behavior of Materials under Conditions of Thermal Stress,” Heat Transfer Symposium, University of Michigan Engineering Research Institute, pp. 9-57, 1953.
    [11] L.F. Coffin, Jr., Trans. ASME 76, 931 (1954).
    [12] S.S. Manson, Heat Transfer Symp. (Ann Arbor: University
    of Michigan Press, 1953), pp. 9–76.
    [13] K.W. Shim, and W.Y. Lo, “Solder Fatigue Modeling of Flip-Chip Bumps in Molded Packages,” IEEE International Electronic Manufacturing Technology, pp. 109-114, 2006.
    [14] K. Biswas, S. Liu, X. Zhang, T.C. Chai, “Effects of detailed substrate modeling and solder layout design on the 1^st and 2^nd level solder joint reliability for the large die FCBGA,” IEEE International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, pp. 1-7, 2008.
    [15] H.U. Akay, Y. Liu, M.Tassaian, “Simplification of Finite Element Models for Thermal Fatigue Life Prediction of PBGA Packages,” ASME Journal of Electronic Packaging, Vol.125, pp.347-353, 2003.
    [16] J.H.Lau, X. Zhang,S.K.W.Seah, K.Vaidyanathan, T.C. Chai, “Nonlinear Thermal Stress/Strain Analyses of Copper Filled TSV (Through Silicon Via) and their Flip-Chip Microbumps,” IEEE Electronic Components and Technology Conference, pp.1073-1081,2008.
    [17] J.H. Lau, S.H. Pan, “Creep Behaviors of Flip Chip on BoardWith 96.5Sn-3.5Ag and 100In Lead-Free Solder Joints,” Journal of Microcircuits and Electronic Packaging, Vol.24, No.1, pp.11-18, 2001.
    [18] J.H. Lau, S.-W. Ricky Lee , "Modeling and Analysis of96.5Sn3.5Ag Lead-Free Solder Joints of Wafer Level ChipScalePackage on BuildupMicroviaPrintedCircuit Board," IEEE T Electron Pack 25(1):51-58,2002.
    [19] Mitchell. D , Guo. Y , Sarihan. V , "Methodology forstudying the impact of intrinsic stress on the reliability of theelectroless Ni UBM structure," IEEE T Compon Pack T 24(4):667-672,2001.
    [20] Temperature Cycling, “JESD22 A104-D”, JEDEC, 2009.
    [21] Andersson, C., Lai, Z., Liu, J, " Comparison of isothermal mechanical fatigue properties of lead-free solder joints and bulk solders," Material Science and Engineering A, vol. 394, No. 1-2(2005), pp. 20-27.
    [22] John H.L. Pang , "creep and fatigue characterization of lead free 95.5Sn3.5Ag0.7Cu solder," Electronic Components and Technology Conf, Vol. 2, 2004, pp.1333-1337.

    無法下載圖示 校內:2019-08-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE