簡易檢索 / 詳目顯示

研究生: 蔡佳真
Tsai, Chia-chen
論文名稱: 以射頻磁控濺鍍法製備TiO2/SnO2複合薄膜之光觸媒活性及光致親水性質之研究
Investigation of Photocatalytic activity and Photo-induced Hydrophilic Properties of TiO2/SnO2 Co-deposited Thin Films Produced by Radio Frequency Sputtering
指導教授: 李世欽
Lee, Shih-chin
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 129
中文關鍵詞: 銳鈦礦金紅石水接觸角光觸媒二氧化錫二氧化鈦
外文關鍵詞: photocatalyst, contact angle, rutile, TiO2, anatase, SnO2
相關次數: 點閱:105下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二氧化鈦為目最廣泛研究和使用的光觸媒材料,因其光觸媒活性高、具有良好的化學與物理穩定性、無毒性與成本低廉的優點,但其照射紫外光後產生的電子與電洞除了產生光觸媒效果之外,亦會產生再結合反應,而降低光觸媒的效率。因此,許多學者投入研究,以增加其電子與電洞的生命週期。
    本研究利用反應性磁控濺鍍法,製備二氧化鈦與二氧化錫的單層膜、複合膜及共沉積薄膜,藉由改變工作壓力與基板溫度的濺鍍參數、以及複合膜的厚度比例將薄膜沉積於(100)矽晶片與康寧玻璃,以得到不同性質表現之鍍膜。以X光粉末繞射儀(XRD)與X-ray 光電子能譜儀(XPS)進行鍍膜結構與成分分析、以穿透式電子顯微鏡(TEM)觀察鍍膜顯微結構、以掃描式電子顯微鏡(SEM)觀察薄膜表面形態,光性的表現以紫外-可見光光譜儀(UV-vis)做分析。光觸媒性質方面,以紫外光(365nm)照射薄膜表面後,利用水接觸角分析薄膜的親水性變化和利用SEM觀察銀離子(Ag+)的還原反應。
    研究結果得知,在TiO2單層膜中,當工作壓力為12mtorr、射頻功率為200W與基板溫度為100oC時,具有較佳的光致親水性質。在改變工作壓力條件下,其結晶相以Anatase相為主,而Anatase相較於Rutile具有較大的光學能隙値,且其電子-電洞生命週期較長。
    在SnO2單層膜中,當射頻功率為120W、工作壓力為12mtor、基板溫度為100oC時,濺鍍粒子具有最適當的能量,可以進行遷移與擴散,因此結晶性最佳。
    在TiO2/SnO2雙層膜中,因其非晶質結構中具有短程有序的Anatase相散佈,故有光觸媒之效果。當TiO2鍍膜厚度為30~90nm時,硝酸銀的還原效果較不明顯,因其電子-電洞有效的分離,而使電子移至TiO2鍍膜表面的數量較少。當TiO2鍍膜厚度為150nm時,具有雙層膜中最佳的光致親水性質,因其結構中具有,短程有序的Anatase相與Rutile相,而加上SnO2鍍膜提升電子-電洞的生命週期。
    在TiO2/SnO2共沉積薄膜中,根據硝酸銀還原與TEM選區繞射的結果,得知共沉積鍍膜Ti0.3Sn00.7O2中,Ti原子以TiO2的Anatase相(200)的結晶面,存在於鍍膜中,因此具有最佳的光觸媒效果。

    Titanium dioxide (TiO2) has been well known as an efficient photocatalyst and extensive research material because of its high photocatalytic activity, chemical and physical stablility, nonpoison and cheap. When TiO2 illuminated by ultraviolet (UV) light with higher energy than the TiO2 band-gap, inter-band transition can be induced resulting in the generation of electron-hole pairs. Such excited electrons or holes can diffuse to the surface and generate some kinds of radicals or ions which can decompose organic compounds and induced hydrophilicity. But the fast recombination rate of photogenerated electron-hole pairs hinders the commercialization of this technology. Hence, many researchers had studied to improve the life-time of electron-hole pairs.
    In this study, TiO2, SnO2 thin films, TiO2/ SnO2 bilayers and co-deposited thin films were deposited on (100) Si wafer and Corning glass substrates by radio frequency magtron sputtering deposition. The properties of the films investigated with changes of working pressure, substrate temperature and the ratio of thickness TiO2/ SnO2 bilayers. The structure and composition of thin films were characterized by X-ray powder diffraction (XRD) and XPS. The microstructure of thin films was observed by TEM. The morphology of thin films was observed by SEM. The optical transmittance of thin films was measured by UV-VIS spectrophotometer. The photocatalytic properties under UV light were characterized as water-contact angle measurement and reduction of Ag+ to Ag in AgNO3 aqueous solution.
    These results showed that when TiO2 single layer deposited at working pressure 12mtorr, RF power 200W and substrate temperature 100oC, it has better photo-induced hydrophilicity. As changing the substrate temperature, it has more percentage of Anatase (200) peack intensity of total diffraction peaks. When changing the working pressure, the structure is Anatase phase. Besides Anatase phase has larger energy gap and longer electron-hole life-time than Rutile phase.
    When SnO2 single layer deposited at RF power 120W, working pressure 12mtorr and substrate temperature 100oC the energy of deposited particles is able to diffuse and migrate thus it has better crystallization.
    It is founded that the TiO2/ SnO2 bilayers have photocatalytic properties because it exists short range order Anatase phase. When the thickness of TiO2 are 30~90nm, the reduction of Ag+ is not obvious. The electron-hole pairs are separated efficiently due to less electrons moving to the surface of TiO2 thin films. When the thickness of TiO2 is 150nm, it has better hydrophilic property for TiO2/ SnO2 bilayer resulting from short range order Anatase phase and Rutile phase of the crystal structure. Additionally, SnO2 layer improved the life-time of electron-hole.
    For TiO2/ SnO2 co-deposited thin films, according to the results of selection area of diffraction pattern and the reduction of Ag+ to Ag, Ti atoms existed in the structure of Ti0.3Sn0.7O2 co-deposited thin films to form Anatase phase with (200) plane. Therefore, it had the best photocatalytic activity. According to above results, it can deduce that the hrdrophilicity of (200) plane of Anatase phase is better than (101) plane of Anatase phase.

    總目錄 中文摘要 I Abstract III 致謝 V 總目錄 VI 圖目錄 XI 表目錄 XVII 第一章 緒論 1 1-1 前言 1 1-2研究動機與目的 4 第二章 文獻回顧和理論基礎 6 2-1 二氧化鈦的基本性質 6 2-2 二氧化鈦的光催化氧化還原反應機構 9 2-3 電荷分離(Charge separation) 13 2-4 二氧化錫的基本特性和二氧化鈦接合電荷分離機制 15 2-5 超親水性(Hydrophilicity) 18 2-6 二氧化鈦與二氧化錫的相關文獻 20 2-7二氧化鈦光觸媒的應用 21 2-8 濺鍍原理 24 2-8.1電漿原理 27 2-8.2 射頻放電 29 2-8.3 磁控濺鍍法 30 2-9 薄膜成長理論 32 2-10 薄膜之光學性質 36 第三章 實驗方法與流程 38 3-1實驗設備 38 3-2 實驗材料 41 3-3 實驗流程 42 3-3.1基板清洗 43 3-3.2鍍膜程序及參數設定 43 3-3.3實驗流程簡介 43 3-4 薄膜性質量測 46 3-4.1晶體結構分析 46 3-4.2 顯微結構分析 47 3-4.3 薄膜厚度量測與成長速率 47 3-4.4 表面形態觀察 48 3-4.5 光學量測 48 3-4.6 成份及化學鍵結分析 48 3-4.7 光誘導親水性之接觸角量測 49 3-4.8 硝酸銀還原 50 第四章 結果與討論 51 4-1 TiO2單層膜 51 4-1.1工作壓力對鍍膜沉積速率之影響 51 4-1.2工作壓力對TiO2鍍膜晶體結構之影響 53 4-1.3 鍍膜晶體微結構之分析 56 4-1.4 鍍膜之表面型態觀察 61 4-1.4.1 掃描式電子顯微鏡分析(SEM) 61 4-1.4.2 原子力顯微鏡分析(AFM) 65 4-1.5 鍍膜之元素成份與鍵結之分析 68 4-1.6 鍍膜之光學性質之分析 72 4-1.7鍍膜之表面張力分析 76 4-1.8鍍膜之光致親水性質分析 80 4-2 SnO2單層膜 81 4-2.1鍍膜沉積速率之分析 81 4-2.2鍍膜之晶體結構分析 83 4-2.3 鍍膜表面型態之分析 84 4-2.3.1 掃描式電子顯微鏡分析(SEM) 84 4-2.3.2原子力顯微鏡分析(AFM) 87 4-2.4鍍膜之表面元素和成分分析 90 4-2.5 鍍膜之光學性質分析 93 4-3 雙層膜與共沉積薄膜 95 4-3.1 鍍膜晶體結構之分析 96 4-3.2 鍍膜晶體微結構之分析 98 4-3.3鍍膜表面型態之分析 100 4-3.3.1 掃描式電子顯微鏡觀察 100 4-3.3.2 原子力顯微鏡分析(AFM) 101 4-3.4 鍍膜之元素成份與鍵結之分析 107 4-3.5鍍膜光學性質分析 109 4-3.6 鍍膜之表面張力分析 110 4-3.7 光致親水性質之分析 113 4-3.8 硝酸銀還原測試 116 第五章 結論 122 參考文獻 123 自述 129

    [1] A. Fujishima and K. Honda, Nature, 238, (1972) 37-38.
    [2] Y. Yamada, H. Uyama, T. Murata and H. Nozoye, J. Vac. Sci. Technol., A, A 19, 5, (2001) 2479.
    [3] R. Wang, K. Hashimoto, A. Fujishima, A. Kitamura, M. Shimohigoshi and T. Watanabe, Nature, 388, (1997) 431.
    [4] Jing Shang, Wenqing Yao, Yongfa Zhu and Nianzu Wu, Applied Catalysis A: General, 257, 1, (2004) 25-32.
    [5] P. Lobl, M. Huppertz and D. Mergel, Thin Solid Films, 251, 1, (1994) 72-79.
    [6] Makiko Yamagishi, Shna Kuriki, P. K. Song and Yuzo Shigesato, Thin Solid Films, 442, 1-2, (2003) 227-231.
    [7] Arturo I. Martinez, Dwight R. Acosta and Gerardo Cedillo, Thin Solid Films, 490, 2, (2005) 118-123.
    [8] L. Cao, F. J. Spiess, A. Huang, S. L. Suib, T. N. Obee, S. O. Hay and J. D. Freihaut, J. Phys. Chem. B, 103, 15, (1999) 2912-2917.
    [9] Michele Lazzeri, Andrea Vittadini and Annabella Selloni, Physical Review B, 63, 15, (2001) 155409.
    [10] A. Fujishima, K. Hashimoto and T. Watanabe, "TiO2 Photocatalysis Fundamentals and Applications", 1st edition, BKC Inc., (1999).
    [11] Ulrike Diebold, Surface Science Reports, 48, 5-8, (2003) 53-229.
    [12] H. L. M. Chang, J. Mater. Res., 7, (1992) 2495-2506
    [13] P. G. Wahlbeck and P. W. Gilles, J. Am. Ceram. Soc, 49, (1966) 180.
    [14] B. Karunagaran, R. T. Rajendra Kumar, C. Viswanathan, D. Mangalaraj, S. K. Narayandass and G. Mohan Rao, Cryst. Res. Technol., 38, (2003) 773-778.
    [15] H. J. Frenck, W. Kulisch, M. Kuhr and R. Kassing, Thin Solid Films, 201, 2, (1991) 327-335.
    [16] K. Bange, C. R. Ottermann, O. Anderson, U. Jeschkowski, M. Laube and R. Feile, Thin Solid Films, 197, 1-2, (1991) 279-285.
    [17] Xiu-Tian Zhao, Kenji Sakka, Naoto Kihara, Yasuyuki Takada, Makoto Arita and Masataka Masuda, Microelectronics Journal, 36, 3-6, (2005) 549-551.
    [18] J. O. Carneiro, V. Teixeira, A. Portinha, L. Dupak, A. Magalhaes and P. Coutinho, Vacuum, 78, 1, (2005) 37-46.
    [19] Michael R. Hoffmann, Scot T. Martin, Wonyong Choi and Detlef W. Bahnemann, Chem. Rev., 95, 1, (1995) 69-96.
    [20] M. D. Driessen and V. H. Grassian, J. Phys. Chem. B, 102, 8, (1998) 1418-1423.
    [21] Chao He, Yun Yu, Xingfang Hu and Andre Larbot, Appl. Surf. Sci., 200, 1-4, (2002) 239-247.
    [22] G. Colon, M. Maicu, M. C. Hidalgo and J. A. Navio, Applied Catalysis B: Environmental, 67, 1-2, (2006) 41-51.
    [23] S. K. Zheng, T. M. Wang, W. C. Hao and R. Shen, Vacuum, 65, 2, (2002) 155-159.
    [24] Idriss Bedja and Prashant V. Kamat, J. Phys. Chem., 99, 22, (1995) 9182-9188.
    [25] Shiyanovskaya I and Hepel M, Journal of the Electrochemical Society, 145, 11, (1998) 3981-3985.
    [26] N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti and H. Hidaka, Journal of Photochemistry and Photobiology A: Chemistry, 85, 3, (1995) 247-255.
    [27] G. Marci, V. Augugliaro, M. J. Lopez-Munoz, C. Martin, L. Palmisano, V. Rives, M. Schiavello, R. J. D. Tilley and A. M. Venezia, J. Phys. Chem. B, 105, 5, (2001) 1026-1032.
    [28] 橋本和仁, "圖解光觸媒", 全華科技, (民95) 2-14.
    [29] Linus Pauling, "The Nature of the Chemical Band", (1989) 514.
    [30] T. B. Massalski, "Binary Alloy Phase Diagrams", (1990) 2919.
    [31] Z. M. Jarzebski and J. P. Marton, J. Electrochem. Soc. –Rew. New, 123, 7, (1976) 199C.
    [32] Z. M. Jarzebski and J. P. Marton, J. Electrochem. Soc. –Rew. New, 123, 9, (1976) 299C.
    [33] Z. M. Jarzebski and J. P. Marton, J. Electrochem. Soc. –Rew. New, 123, 10, (1976) 333C.
    [34] D. A. Neamen, "Semiconductor physics & devices: Basic principles", Second ed, IRRWIN, (1997) 304-314.
    [35] H. Tada, A. Hattori, Y. Tokihisa, K. Imai, N. Tohge and S. Ito, J. Phys. Chem. B, 104, 19, (2000) 4585-4587.
    [36] Akihiko Hattori, Yoshifumi Tokihisa, Hiroaki Tada and Seishiro Ito, J. Electrochem. Soc., 147, 6, (2000) 2279-2283.
    [37] James G. Highfield and Michael Graetzel, J. Phys. Chem., 92, 2, (1988) 464-467.
    [38] Lo Wei Jen, Chung Yip Wah and G. A. Somorjai, Surface Science, 71, 2, (1978) 199-219.
    [39] R. D. Sun, A. Nakajima, A. Fujishima, T. Watanabe and K. Hashimoto, J. Phys. Chem. B, 105, 10, (2001) 1984-1990.
    [40] M. Miyauchi, A. Nakajima, A. Fujishima, K. Hashimoto and T. Watanabe, Chem. Mater., 12, 1, (2000) 3-5.
    [41] Akira Fujishima, Tata N. Rao and Donald A. Tryk, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1, (2000) 1-21.
    [42] Satoshi Takeda, Susumu Suzuki, Hidefumi Odaka and Hideo Hosono, Thin Solid Films, 392, 2, (2001) 338-344.
    [43] S. M Rossnagel et al, "Handbook of plasma processing technology", Noyes Publications Park Ridge, New Jersey, U.S.A, (1982).
    [44] Brain Campman, "Plasma", Glow Discharge Process, John Wiley & Sons, New York, U. S. A, (1980) Chap.3.
    [45] 林光隆, "材料表面工程講義", 國立成功大學材料科學及工程學系, (2001) chap.7.
    [46] L. John Vossen and Werner Kerm, "Thin Film Process", Academic Process, (1999) 134.
    [47] R. F. Bunshah, "Deposition Technologies for Films and Coatings", Noyes Publications, Park Ridge, New Jersey, U. S. A, (1982).
    [48] J. Venables, Rep. Prog. Phys., 47, (1984) 399.
    [49] John A. Thornton, J. Vac. Sci. Technol., A, 11, 4, (1974) 666-670.
    [50] 艾啟峰, 科儀新知, 第 20 卷第 3 期, (1998) 79–89 頁.
    [51] Lata Gupta, Abhai Mansingh and P. K. Srivastava, Thin Solid Films, 176, 1, (1989) 33-44.
    [52] 李玉華, 科儀新知, 第十二卷第一期, (1990) 94-102.
    [53] Elias Burstein, Phys. Rev., 93, 3, (1954) 632.
    [54] H.L Hartangel, A.L. Dawar, A.K. Jain and C. Jagadish, "Semiconducting Transparent Thin Films", Institute of Physics, Philiadelphia, (1995) 219-230.
    [55] P. Zeman and S. Takabayashi, Surf. Coat. Technol., 153, 1, (2002) 93-99.
    [56] 陳力俊, "材料電子顯微鏡學", 國科會精儀中心發行, 修訂再版, (1994) 75-77.
    [57] Dwight R. Acosta, Arturo Martinez, Carlos R. Magana and Jesus M. Ortega, Thin Solid Films, 490, 2, (2005) 112-117.
    [58] Takahira Miyagi, Masayuki Kamei, Takefumi Mitsuhashi, Takamasa Ishigaki and Atsushi Yamazaki, Chemical Physics Letters, 390, 4-6, (2004) 399-402.
    [59] Hsiao-Chiang Yao, Ming-Chieh Chiu, Wen-Tang Wu and Fuh-Sheng Shieu, J. Electrochem. Soc., 153, 10, (2006) F237-F243.
    [60] A. Amaral, P. Brogueira, C. Nunes de Carvalho and G. Lavareda, Surf. Coat. Technol., 125, 1-3, (2000) 151-156.
    [61] D. Briggs and M.P. Seah, "Practical Surface Analysis", Chichester, Wiley, (c1990-c1992) New York.
    [62] C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder and G.E. muilenberg(Editor), "HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY", Eden Prairie, Minn., Physical Electronics, (1995).
    [63] John F. Moulder, Jill Chastain and Roger C. King, "Handbook of x-ray photoelectron spectroscopy : a reerence book of standard spectra for identification and interpretation of XPS data", Eden Prairie, Minn., Physical Electronics, (c1995).
    [64] G. B. Song, H. Joly, F. S. Liu, T. J. Peng, P. Wan and J. K. Liang, Appl. Surf. Sci., 220, 1-4, (2003) 159-168.
    [65] Jing Liqiang, Fu Honggang, Wang Baiqi, Wang Dejun, Xin Baifu, Li Shudan and Sun Jiazhong, Applied Catalysis B: Environmental, 62, 3-4, (2006) 282-291.
    [66] G. J. Wan, N. Huang, P. Yang, A. S. Zhao, H. Sun, Y. X. Leng, J. Y. Chen, J. Wang and Xi Wu, Surf. Coat. Technol., 201, 15, (2007) 6889-6892.
    [67] R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo and F.Levy, J. Appl. Phys, 75, 6, (1994) 2945-2951.
    [68] Xiao-Ping Wang, Yun Yu, Xing-Fang Hu and Lian Gao, Thin Solid Films, 371, 1-2, (2000) 148-152.
    [69] 李正中, "薄膜光學與鍍膜技術", 藝軒圖書出版社, 第一版, (1999) 390-397.
    [70] H. Lin, S. Kumon, H. Kozuka and T. Yoko, Thin Solid Films, 315, 1-2, (1998) 266-272.
    [71] Yu Zhang, John Wang and Jun Li, J Electroceram., 16, 4, (2006) 499-502.
    [72] Thomas Young, Phil. Trans. R. Soc. (London), 95, -1, (1805) 65-87.
    [73] F. M. Fowkes, J. Phys. Chem., 66, 2, (1962) 382-382.
    [74] D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci., 13, 8, (1969) 1741-1747.
    [75] Q. Zhao, Y. Liu and E. W. Abel, Journal of Colloid and Interface Science, 280, 1, (2004) 174-183.
    [76] D. E. Packham, International Journal of Adhesion and Adhesives, 23, 6, (2003) 437-448.
    [77] M. Ohing, "The Materials Science of Thin Films", printed in the United States of America, (1991) 11-112.
    [78] W. H. Lee, H. C. Son, H. S. Moon, Y. I. Kim, S. H. Sung, J. Y. Kim, J. G. Lee and J. W. Park, Journal of Power Sources, 89, 1, (2000) 102-105.
    [79] M. Moroseac, T. Skala, K. Veltruska, V. Matolin and I. Matolinova, Surface Science, 566-568, Part 2, (2004) 1118-1123.
    [80] M. Kwoka, L. Ottaviano, M. Passacantando, S. Santucci, G. Czempik and J. Szuber, Thin Solid Films, 490, 1, (2005) 36-42.
    [81] Zhiwen Chen, Joseph K. L. Lai and Chan-Hung Shek, Appl. Phys. Lett., 89, 231902, (2006).
    [82] Masahiko Maeda and Kenichi Hirota, Applied Catalysis A: General, 302, 2, (2006) 305-308.
    [83] L. Sirghi, T. Aoki and Y. Hatanaka, Thin Solid Films, 422, 1-2, (2002) 55-61.
    [84] Cun Wang, Bo-Qing Xu, Xinming Wang and Jincai Zhao, Journal of Solid State Chemistry, 178, 11, (2005) 3500-3506.
    [85] J. S. Chen, H. L. Li and J. L. Huang, Appl. Surf. Sci., 187, 3-4, (2002) 305-312.
    [86] C.B. Alcock O. Kubaschewski, P.J. Spencer,, "Materials Thermochemistry", Pergamon Press, Oxford, (1993) Chapter 5.

    下載圖示 校內:2010-07-21公開
    校外:2012-07-21公開
    QR CODE