| 研究生: |
徐瑋鴻 Hsu, Wei-Hung |
|---|---|
| 論文名稱: |
CMOS 60 GHz寬頻低雜訊放大器及24 GHz低雜訊放大器使用蜂巢型電感之設計 Design of CMOS 60 GHz Wideband Low Noise Amplifier and 24 GHz LNA with A Honeycomb-Shaped Inductor |
| 指導教授: |
黃尊禧
Huang, Tzuen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 低雜訊放大器 、閘極電感強化增益技術 、傳輸線 、蜂巢型結構電感 、抑制電磁干擾 |
| 外文關鍵詞: | low noise amplifier, gate-inductive gain-peaking technique, transmission line, honeycomb-shaped inductor, EMI suppression |
| 相關次數: | 點閱:85 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文設計研製60 GHz CMOS寬頻低雜訊放大器與24 GHz CMOS低雜訊放大器使用具抑制電磁干擾之蜂巢型電感。論文主要分為兩部份:第一部份包含低雜訊放大器的簡介與重要參數介紹,接著為60 GHz CMOS寬頻低雜訊放大器的設計流程與實際量測結果;第二部份為具抑制電磁干擾之蜂巢型電感簡介與將此電感使用於24 GHz CMOS低雜訊放大器設計與實際量測結果。
60 GHz CMOS寬頻低雜訊放大器主要電路架構為串接四級疊接組態放大器,而匹配網路使用薄膜微帶線來取代電感與部份電容,可降低整體面積,同時提升整體設計之精準度。在輸入與輸出匹配網路採用型網路,達成寬頻特性,並在疊接放大器中的共閘極放大器的閘極端,加上一段等效為電感特性的微帶線,提升整體增益。此60 GHz CMOS寬頻低雜訊放大器採用標準TSMC 90 nm CMOS製程製作。量測結果顯示,最高增益為23 dB,頻寬達12 GHz (55-67 GHz),而最低之雜訊指數為6.4 dB,輸入1-dB壓縮功率IP1dB為-26 dBm,IIP3為-15.7 dBm,整體晶片面積為0.6 mm2,電源電壓採用1.8 V,整體功率消耗為20.1 mW。
24 GHz CMOS低雜訊放大器特點在於使用具抑制電磁干擾能力之蜂巢型電感,蜂巢型電感因特殊的結構設計,擁有磁場感應相互抵銷的能力,不僅能降低電感對外界的干擾,也能抑制外來磁場的干擾。電路主要架構為疊接式源極電感退化架構,其中源極電感使用蜂巢型電感,此低雜訊放大器電路符合24 GHz ISM頻帶的應用需求。晶片採用標準TSMC 0.18 um CMOS製程製作,量測結果顯示最高增益為8.55 dB,雜訊指數約為4 dB,IP1dB與IIP3分別為-11 dBm與-3 dBm。單一24 GHz CMOS低雜訊放大器所佔面積為0.59 mm2,電源電壓採用1.8 V,功率消耗為5.72 mW。與使用傳統型電感的放大器比較,本論文所設計之24 GHz低雜訊放大器使用蜂巢型電感,有優於10-15 dB的抑制電磁干擾效果。
The designs of 60 GHz CMOS wideband low noise amplifier (LNA) and 24 GHz CMOS LNA with an EMI suppression honeycomb-shaped inductor are presented in this thesis. The thesis mainly contains two parts. The first part of the thesis is about the introduction to an LNA and the related key parameters. The followed is the design flow and the experimental results of a 60 GHz CMOS wideband LNA. The second part is to introduce the electromagnetic interference suppression (EMI) honeycomb-shaped inductor and to discuss the design of 24 GHz CMOS LNA integrated with the honeycomb-shaped inductor and the experimental results.
The structure of the 60 GHz CMOS wideband LNA is composed of 4 stages of cascode amplifiers. For the purpose of reducing the occupied area and increasing the success of circuit function, the matching networks are implemented with the thin-film microstrip (TFMS) lines instead of the lumped inductors and capacitors. The π type topology is adopted in the input and output matching networks to realize the wideband operation. In addition, a section of microstrip line as an inductor is placed at the gate terminal of the common gate stage in each cascode amplifier to improve the circuit performance. The 60 GHz CMOS wideband LNA has been fabricated in TSMC 90 nm standard process. The measured maximum gain is 23 dB with the available bandwidth of 12 GHz (55-67 GHz). The measured minimum noise figure (NF) is 6.4 dB and the IP1dB is -26 dBm, respectively. The chip size is 0.6 mm2. With supply voltage of 1.8 V and the overall dc power consumption is 20.1 mW.
The 24 GHz LNA features an integration with an EMI suppression honeycomb-shaped inductor. With the unique layout, the induced voltages of the sub-coils due to the magnetic flux linked through the honeycomb-shaped inductor from the adjacent inductors will be cancelled, therefore the honeycomb-shaped inductor is able to provide magnetic field induction cancellation. On the other hand the inductor has an even number of anti-direction magnetic dipole moments to reduce the magnetic flux linked to the adjacent device. The honeycomb-shaped inductor also can prevent from the expansion of inner magnetic flux and thus can suppress the influence to the adjacent devices at the same time. Cascode topology with source inductive degeneration is adopted in the 24 GHz LNA design, wherein the honeycomb-shaped inductor is used as the source inductor.
The 24 GHz LNA has been fabricated in TSMC 0.18 um CMOS process. The measured maximum gain and minmum NF are 8.55 dB and 4 dB, respectively. The measured IP1dB is -11 dBm and IIP3 is -3 dBm. The chip size is 0.59 mm2. With a supply voltage of 1.8 V, the dc power consumption is 5.72 mW. The 24 GHz LNA with a honeycomb-shaped inductor is proved to exhibit a better EMI suppression than the LNA with a conventional inductor over 10-15 dB.
[1] B. Razavi, “A 60 GHz CMOS receiver front-end,” IEEE Journal of Solid-State Circuits, vol. 41, no. 1, pp. 17-22, Jan. 2006.
[2] A. Tomkins, R. A. Aroca, T. Yamamoto, S. T. Nicolson, Y. Doi and S. P. Voinigescu, “A Zero-IF 60 GHz 65 nm CMOS transceiver with direct BPSK modulation demonstrating up to 6 Gb/s data rates over a 2 m wireless link,” IEEE Journal of Solid-State Circuits, vol. 44, no. 8, pp. 2085-2099, Aug. 2009.
[3] H. C. Kuo, H. L. Yue, Y. W. Ou, C. C. Lin and H. R. Chuang, “A 60 GHz CMOS sub-harmonic RF receiver with integrated on-chip artificial-magnetic-conductor yagi antenna and balun bandpass filter for very-short-range gigabit communications,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1681-1691, Apr. 2013.
[4] L. Yujiri, M. Shoucri and P. Moffa, “Passive millimeter wave imaging,” IEEE Microwave Magazine, vol. 4, no. 3, pp. 39-50, Sep. 2003.
[5] J. A. Howarth, “60 GHz radios: enabling next-generation wireless applications,” TENCON 2005 - 2005 IEEE Region 10 Conference, Melbourne, 2005, pp. 1-6.
[6] C. H. Chan, C. C. Chou and H. R. Chuang, “Integrated packaging design of low-cost bondwire interconnection for 60 GHz CMOS vital-signs radar sensor chip with millimeter-wave planar antenna,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 8, no. 2, pp. 177-185, Feb. 2018.
[7] L. Roselli et al., “A cost driven 24 GHz Doppler radar sensor development for automotive applications,” in European Radar Conference, Paris, 2005, pp. 335-338.
[8] B. Razavi, RF Microelectronics, second edition, Prentice Hall, Inc., 2012.
[9] M. Daoud, H. Mnif and M. Ghorbel, “Resistive termination low noise amplifier for bio-sensor applications,” 2016 11th International Design & Test Symposium (IDT), Hammamet, 2016, pp. 245-249.
[10] Y. J. E. Chen and Y. I. Huang, “Development of integrated broad-band CMOS low-noise amplifiers,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 10, pp. 2120-2127, Oct. 2007.
[11] D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE Journal of Solid-State Circuits, vol. 32, no. 5, pp. 745-759, May 1997.
[12] K. W. Cheng, Radio Frequency Integrated Circuit, Lecture Notes, 2016.
[13] B. Johnson, “Thermal agitation of electricitv in conductors,” Phys. Rev., vol. 32, pp. 97-109, Jul. 1928.
[14] H. Nyquist, “Thermal agitation of electricitv in conductors,” Phys. Rev., vol. 32, pp. 110-113, Jul. 1928.
[15] B. Razavi, R. H. Yan and K. F. Lee, “Impact of distributed gate resistance on the performance of MOS devices,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 41, no. 11, pp. 750-754, Nov. 1994.
[16] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.
[17] D. M. Pozar, Microwave Engineering, third edition, John Wiley and Sons, Inc., 2005.
[18] D. Woods, “Reappraisal of the unconditional stability criteria for active 2-port networks in terms of S parameters,” IEEE Transactions on Circuits and Systems, vol. 23, no. 2, pp. 73-81, Feb. 1976.
[19] M. L. Edwards and J. H. Sinsky, “A new criterion for linear 2-port stability using a single geometrically derived parameter,” IEEE Transactions on Microwave Theory and Techniques, vol. 40, no. 12, pp. 2303-2311, Dec. 1992.
[20] K. Kang, J. Brinkhoff and F. Lin, “A 60 GHz LNA with 18.6 dB gain and 5.7 dB NF in 90nm CMOS,” in 2010 International Conference on Microwave and Millimeter Wave Technology, Chengdu, 2010, pp. 164-167.
[21] C. C. Huang, H. C. Kuo, T. H. Huang and H. R. Chuang, “Low-power, high-gain V-band CMOS low noise amplifier for microwave radiometer applications,” IEEE Microwave and Wireless Components Letters, vol. 21, no. 2, pp. 104-106, Feb. 2011.
[22] H. C. Yeh, C. C. Chiong, S. Aloui and H. Wang, “Analysis and design of millimeter-wave low-voltage CMOS cascode LNA with magnetic coupled technique,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 12, pp. 4066-4079, Dec. 2012.
[23] Meng Jin et al., “A wideband LNA in 40 nm CMOS,” in 2016 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), Beijing, 2016, pp. 566-568.
[24] S. Guo et al., “54 GHz CMOS LNAs with 3.6 dB NF and 28.2 dB gain using transformer feedback Gm-boosting technique,” in 2014 IEEE Asian Solid-State Circuits Conference (A-SSCC), KaoHsiung, 2014, pp. 185-188.
[25] S. Guo, T. Xi, P. Gui, D. Huang, Y. Fan and M. Morgan, “A transformer feedback Gm -boosting technique for gain improvement and noise reduction in mm-wave cascode LNAs,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 7, pp. 2080-2090, Jul. 2016.
[26] A. Malignaggi, A. Hamidian, R. Shu, A. M. Kamal and G. Boeck, “Analytical study and performance comparison of mm-wave CMOS LNAs,” in 2013 European Microwave Integrated Circuit Conference, Nuremberg, 2013, pp. 260-263.
[27] T. O. Dickson et al., “The invariance of characteristic current densities in nanoscale MOSFETs and its impact on algorithmic design methodologies and design porting of Si(Ge) (Bi)CMOS high-speed building blocks,” IEEE Journal of Solid-State Circuits, vol. 41, no. 8, pp. 1830-1845, Aug. 2006.
[28] K. Kuhn et al., “A comparison of state-of-the-art NMOS and SiGe HBT devices for analog/mixed-signal/RF circuit applications,” in Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004, pp. 224-225.
[29] Y. H. Yu, Y. S. Yang, and Y. J. E. Chen, “A compact wideband CMOS low noise amplifier with gain flatness enhancement,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 502-509, Mar. 2010.
[30] H. H. Hsieh, P. Y. Wu, C. P. Jou, F. L. Hsueh and G. W. Huang, “60 GHz high-gain low-noise amplifiers with a common-gate inductive feedback in 65nm CMOS,” 2011 IEEE Radio Frequency Integrated Circuits Symposium, Baltimore, MD, 2011, pp. 1-4.
[31] M. M. Harsoori, T. Z. A. Zulkifli, U. Abbas and S. Sattar, “A gain boosting single stage cascode LNA for millimeter-wave applications,” in 2017 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), Kuala Lumpur, 2017, pp. 109-112.
[32] A. M. Mangan, S. P. Voinigescu, M. T. Yang and M. Tazlauanu, “De-embedding transmission line measurements for accurate modeling of IC designs,” IEEE Transactions on Electron Devices, vol. 53, no. 2, pp. 235-241, Feb. 2006.
[33] S. Shekhar, J. S. Walling and D. J. Allstot, “Bandwidth extension techniques for CMOS amplifiers,” IEEE Journal of Solid-State Circuits, vol. 41, no. 11, pp. 2424-2439, Nov. 2006.
[34] K. Kang, J. Brinkhoff and F. Lin, “A 60 GHz LNA with 18.6 dB gain and 5.7 dB NF in 90nm CMOS,” in 2010 International Conference on Microwave and Millimeter Wave Technology, Chengdu, 2010, pp. 164-167.
[35] H. C. Yeh, C. C. Chiong, S. Aloui and H. Wang, “Analysis and design of millimeter-wave low-voltage CMOS cascode LNA with magnetic coupled technique,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 12, pp. 4066-4079, Dec. 2012.
[36] Z. Lei, Z. Chunyuan, W. Hongrui, W. Yan, Q. He and Y. Zhiping, “A fully integrated 60 GHz four channel CMOS receiver with 7 GHz ultra-wide bandwidth for IEEE 802.11ad standard,” China Communications, vol. 11, no. 6, pp. 42-50, Jun. 2014.
[37] H. Mizutani et al., “An optimum inductive matched cascode LNA in 60 GHz-band,” 2015 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Sendai, 2015, pp. 28-30.
[38] H. B. Erzgraber, T. Grabolla, H. H. Richter, P. Schley and A. Wolff, “A novel buried oxide isolation for monolithic RF inductors on silicon,” International Electron Devices Meeting 1998. Technical Digest, San Francisco, CA, USA, 1998, pp. 535-539.
[39] T. Wang, C. H. Chen, Y. S. Lin and S. S. Lu, “A micromachined CMOS distributed amplifier by CMOS compatible ICP deep-trench technology,” IEEE Electron Device Letters, vol. 27, no. 4, pp. 291-293, Apr. 2006.
[40] Lurng Shehng Lee et al., “Isolation on Si wafers by MeV proton bombardment for RF integrated circuits,” IEEE Transactions on Electron Devices, vol. 48, no. 5, pp. 928-934, May 2001.
[41] T. H. Huang, S. F. Yang and S. T. Lin, “Characterization of a planar honeycomb-based inductor on crosstalk/EMI suppression,” in IEEE Transactions on Electromagnetic Compatibility, (Accepted 2018. DOI: 10.1109/TEMC.2018.2828613).
[42] 林士棠,具抑止電磁干擾之蜂巢型電感結構與其應用於射頻壓控振盪器之探討,國立成功大學電機工程學系研究所碩士論文,民國106年。
[43] T. K. Nguyen, C. H. Kim, G. J. Ihm, M. S. Yang and S.G. Lee, “CMOS low-noise amplifier design optimization techniques,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 5, pp. 1433-1442, May 2004.
[44] T. P. Wang, “A low-voltage low-power K-band CMOS LNA using DC-current-path split technology,” IEEE Microwave and Wireless Components Letters, vol. 20, no. 9, pp. 519-521, Sep. 2010.
[45] Y. T. Chang and H. C. Lu, “A low power broadband K-band low noise amplifier,” in 2014 Asia-Pacific Microwave Conference, Sendai, Japan, 2014, pp. 223-225.
[46] B. Liu, G. Chen and Y. Chen, “A 24-GHz single-to-differential LNA for K-band receiver applications,” in 2016 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), Beijing, 2016, pp. 511-513.
[47] M. Y. Huang, R. Y. Huang and R. M. Weng, “A 0.3V low cost low power 24 GHz low noise amplifier with body bias technology,” 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Bochum, 2017, pp. 519-522.