簡易檢索 / 詳目顯示

研究生: 黃致賢
Huang, Chin-Hsien
論文名稱: 摻雜微量鉀於酞菁銅碳六十異質接面有機太陽能電池之研究
Study of Interfacial Potassium Doping in CuPc/C60-Based Heterojunctional Organic Solar Cells
指導教授: 施權峰
Shih, Chuan-Feng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 84
中文關鍵詞: 有機太陽能電池鹼金屬酞菁銅碳六十
外文關鍵詞: Organic solar cells, Alkali metal, CuPc, C60
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要的研究方向為摻雜鹼金屬鉀對於有機太陽能電池的影響,我們使用CuPc和C60兩種小分子材料當作元件的主動層,製作基本結構為(Glass/ITO/CuPc/C60/BCP/Al)並使其最佳化。藉由在CuPc和C60介面鍍上鹼金屬鉀應用至太陽能電池元件上,探討鹼金屬鉀元素對元件的影響。
    實驗過程中,摻雜鉀的含量控制是相當重要的參數之一,過量的鉀會使得元件之P-N接面形成P-M(Metal)-N接面,使得元件效能變差,因此我們除了嘗試找出對元件最佳的鉀含量,並且在介面和離介面不同之距離做了摻雜距離之調變;根據文獻,在CuPc和C60兩種小分子材料藉由鍍鹼金屬鉀,對於此結構的能階會有所改變,透過理論上的計算,能使開路電壓多提升0.35V;然而應用在元件時,觀察到開路電壓只有些微的提升,反倒是在元件摻雜鉀在介面位置且做退火條件75℃、10min時,短路電流有很顯著的增加,這和當初所要預期的現象不同,因此接下來則將針對電流提升的現象,我們試著找出可能提升電流的各種原因,歸納出微量摻雜鹼金屬元素鉀以及退火對太陽能電池影響機制。

    The main research in this paper discusses the effect caused by doping Alkali metal potassium for organic solar cells. We use two types of small molecular materials, CuPc and C60, as active layer of solar cells and produce the basic structure (Glass / ITO / CuPc/C60/BCP/ Al) and the device with better performance can be achieved.
    The most important parameter in this experiment is to control the ratio of deposited potassium and CuPc. Excessive deposited potassium in the interface between the CuPc and C60 formed the P-M(metal)-N structure that degraded the device performance. Except the appropriate ratio of potassium and CuPc in the active layer of device, we tried to bury the potassium in the CuPc or C60 with different distance from the interface to observe the effect to devices. According to reference, the energy level of CuPc and C60 molecules could variety by doping the potassium, and the theory values of open circuit voltage could be increased 0.35 eV. When the potassium doped between the interfaces of the device, the open circuit voltage increased slightly, but the short circuit current density (Jsc) improved significantly after annealing at 75oC for 10 min. This situation is different from our expectation. So that, in this work, we tried to find the reasons and the mechanism for the improvement of Jsc after doping potassium and subsequent annealing by the XPS, PL, the mobilities of the transport carriers and C-V measurement.

    摘要 …………………………………………………………………………………………………………………………III Abstract …………………………………………………………………………………………………………………………IV 致謝 ………………………………………………………………………………………………………………………….V 目錄 …………………………………………………………………………………………………………………………VI 表目錄 ………………………………………………………………………………………………………………………….IX 圖目錄 …………………………………………………………………………………………………………………………X 第一章 研究背景與動機 1 1-1 前言 1 1-1-2 各種太陽能電池的介紹 2 1-2 有機太陽能電池之發展 4 1-2-1單層有機太陽能電池 5 1-2-2雙層異質接面之有機太陽能電池 6 1-2-3總體異質接面之有機太陽能電池 7 1-3 文獻回顧 8 1-3-1 CuPc/C60結構回顧 8 1-3-2 CuPc/C60介面摻雜鉀之電子結構分析 10 1-4 研究動機 11 1-5 論文架構及研究方向 11 第二章 太陽能電池的原理 15 2-1 太陽能電池原理 15 2-1-1 P-N 接面太陽能電池 15 2-1-2 有機太陽能發電原理 17 2-2 太陽能電池的特性分析 19 2-2-1 開路電壓 (Open circuit voltage, Voc) 19 2-2-2 短路電流 (Short circuit, Isc) 19 2-2-3 填充因子 (Fill factor) 20 2-2-4 能量轉換效率(Power conversion efficiency, PCE) 21 2-2-5外部量子效率(External quantum efficiency, EQE) 21 2-3 空間電荷侷限電流(Space charge limited current) 22 第三章 實驗流程 29 3-1 材料選擇 29 3-1-1酞菁銅 Cooper Phthalocyanine (CuPc) 29 3-1-2 碳六十Fullerene (C60) 29 3-1-3鉀( Potassium,K) 30 3-1-4 Bathocuproine (BCP) 30 3-2 ITO玻璃清洗與圖樣化 31 3-2-1 ITO玻璃清洗 31 3-2-2 ITO表面圖樣化 32 3-3 太陽能電池元件製作 33 3-3-1 ITO玻璃清洗 33 3-3-2 摻雜主動層 33 3-3-3 電洞與激子傳輸阻擋層之摻雜 34 3-3-4 鋁電極摻雜 34 3-3-5 元件封裝和退火 35 3-4 將摻雜鹼金屬鉀應用於太陽能電池元件實驗流程 35 3-4-1 摻雜鉀實驗流程 35 3-4-2 鉀含量的定義 36 3-5 製作量測載子遷移率元件 36 3-5-1製作Electron only元件 36 3-5-2製作Hole only 元件 37 3-6 實驗量測 37 3-6-1 I-V的照光特性曲線量測 37 3-6-2電容-電壓量測(C-V 量測) 38 3-6-2 X光光電子能譜儀(HRXPS, ESCA) 38 3-6-3 光致螢光頻譜 錯誤! 尚未定義書籤。 第四章 結果與討論 50 4-1 前言 50 4-1-1 基本元件特性分析 50 4-2 在主動層介面摻雜微量鉀之元件 51 4-2-1元件特性探討 52 4-3 離介面不同距離處摻雜微量鉀之元件 53 4-3-1 元件特性探討 54 4-3-2結論 54 4-4 嘗試找出電流增加原因和鉀的影響機制 55 4-4-1 吸收光譜量測 55 4-4-2光電子能譜量測(XPS) 55 4-4-3電容-電壓量測(C-V) 57 4-4-4 光激發螢光頻譜(PL) 58 4-4-5 載子遷移率量測 59 4-5 綜合討論 61 4-5-1結論 62 表4-3鉀摻雜量以電流和時間控制參數表 65 表4-4有無摻雜鉀元件之載子遷移率 65 表4-5有無摻雜鉀元件之電容和空乏區寬度值 65 第五章 結論與未來規劃 80 5-1結論 80 5-2 未來規劃 80 文獻 ………………………………………………………………………………………………………………..………82

    1. 黃信雄, “因應「氣候變化綱要公約」的我國太陽能應用策略”, 太陽能學刊,第2卷,第1期,39-45(1997).
    2. C.W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phy. Lett. 48,pp.183-185 (1986).
    3. G. Yu, C. Zhang, and A. J. Heeger, “Dual-function semiconducting polymer devices: Light-emitting and photodetecting diodes”, Appl. Phys. Lett., 64, 1540 (1994)
    4. C. W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phys. Lett., 48, 183 (1986)
    5. P. Peumans, V. Bulovi, and S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes”, Appl. Phys. Lett., 76, 2650 (2000)
    6. C.P. Cheng, W. Y. Chen, C. H. Wei, and T.W. Pi, “Interfacial electronic structures of C60 molecules on aK-doped CuPc surface “ Appl. Phys. Lett., 94,203303 (2009)
    7. Donald A. Neamen, “半導體物理及元件 (第三版)”
    8. 王裕文, “主要吸收層結構及電洞傳輸層對有機高分子混合型異質接面太陽能電池之影響”, 國立東華大學碩士論文.
    9. 鄭弘彬, “有機無機混合太陽電池製程之研究”, 國立清華大學.
    10. P. Würfel, “Physics of Solar Cells”.(2004)
    11. C. Brabec, V. Dyakonov, J. Parisi, N. S. Sariciftci, “Organic Photovoltaics (Concepts and REALIZATION)”.
    12. C. Brabec, V. Dyakonov, J. Parisi, N. S. Sariciftci, “Organic Photovoltaics (Concepts and REALIZATION)”.
    13. S. S. Sun, N. S. Sariciftci, “Organic Photovoltaics (Mechanisms, Materials and Devices)”.
    14. R. H. Friend, Nature (London) 397, 121 (1999).
    15. W. Clemens, W. Fix, J. Ficker, A. Knobloch, and A. Ullmann, J. Mater. Res 19, 1963 (2004).
    16. G. Horowitz, J. Mater. Res 19, 1946 (2004).
    17. H. Hoppe and N. S. Sariciftci, J. Mater. Res 19, 1924 (2004).
    18. 張自恭博士, “碳六十科學網”, (2003).
    19. C. K. J. H. Schon, and B. Batlogg, Science 293, 2432 (2001).
    20. P. Peumans and S. R. Forrest , “Very-high-efficiency double- heterostructure copper phthalocyanine/C60 photovoltaic cells“, Appl. Phys. Lett., 79, 126-128 (2001)
    21. J. Huang, G. Li, Y. Yang, “A Semi-transparent Plastic Solar Cell Fabricated by a Lamination Process”, Adv. Mater., 20, 415-419(2008).
    22. Fan Yang, and Stephen R. Forrest, “ Photocurrent Generation in Nanostructured Organic Solar Cells“, ACS Nano, 2, 5 (2008)
    23. O. V. Molodtsova, V. M. Zhilin, D. V. Vyalikh , V. Yu. Aristov , M. Knupfer, “Electronic properties of potassium-doped CuPc“, Journal of Appl. Phys. 98,093702 (2005)
    24. A. Liu, S. Zhao, S. B. Rim, J. Wu, M. Konemamnn,P. Erk, “Control of Electric Filed Strength and Orientation at the Donor-Acceptor Interface in Organic Solar Cells“,Adv. Mater. 20,1065-1070 (2008)
    25. G. Li , V. Shrotriya ,J. Huang ,Y. Yao , Tommoriarty ,K. Emery and Y. Yang “High-efficiency solution processable polymer photovoltaic cells by Self-Organization of polymer blends“ ,Nature Mater. 4 (2005)

    無法下載圖示 校內:2020-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE