簡易檢索 / 詳目顯示

研究生: 鍾昱辰
Chung, Yu-Chen
論文名稱: 發展適應於高動態載具之GPS衛星接收機
Development of a GPS Receiver for High-Dynamic Vehicles
指導教授: 莊智清
Juang, Jyh-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 97
中文關鍵詞: 全球定位系統衛星接收機高動態環境都卜勒頻移
外文關鍵詞: GPS receiver, High-dynamic environment, Doppler frequency shift
相關次數: 點閱:115下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球定位系統(GPS)發展於1973年,起初是為了克服其精準導航定位的限制。而在1995年提供完整的功能後,其功能之便利性也成為現今人們生活不可或缺的一部分。但隨著時代的演進,高速移動載具逐漸興起,一般商用的GPS接收機漸漸無法正常運作於這些載具上。由於高動態載具在移動的過程中會有相當大的加速度變化,因而產生之瞬間都卜勒頻移也將相當巨大。對於一般商用接收機之追蹤迴路而言,巨大的都卜勒變化會造成追蹤迴路因應不及進而導致衛星脫鎖,失去導航定位的功能。因此,該如何補償此頻移所造成的問題則是整體研究之關鍵。本論文針對高動態環境下所產生的問題進行探討,並自主發展一高動態GPS接收機。此接收機有別於一般商用型GPS衛星接收機,其可因應10g以上之加速度變化並妥適地追蹤此移動過程中的天頂衛星,使之免於衛星脫鎖的問題,並完整的記錄載具移動的軌跡。最後,藉由靜態、動態、與實際火箭載具發射來驗證此接收機之性能。此研究成果將對於往後高動態載具軌跡之驗證與調整,以及接收機於高動態環境的應用奠定堅實的基礎。

    The Global Positioning System (GPS) was developed in 1973 in order to overcome the limitations of previous navigation methods and became fully operational in 1995. Nowadays, the GPS provides convenience for people and becomes an irreplaceable part of life. It’s desired to develop a naviga-tion tool for high-dynamic vehicles by using GPS techniques. Existing commercial GPS receiver cannot normally operate in these vehicles. There are large change of acceleration due to the moving of high-dynamic vehicles that causing huge Doppler frequency shift. Such a huge Doppler frequen-cy shift will impose stress on the tracking loop of commercial receiver to lose of lock. Thus, the key of research is to develop techniques to compensate for the effect by Doppler frequency shift. This thesis will discuss the problem against the high-dynamic environment and develop a high-dynamic GPS receiver which can overcome more than 10g acceleration changing and prevent losing lock of satellites. A series of experiments are conducted to verify the performance of receiver in static, dy-namic, and actual rocket launch scenarios. The research results in this thesis are helpful to verify rocket trajectory and develop high-dynamic receivers.

    摘要 I Abstract II Acknowledgements III Contents IV List of Tables VI List of Figures VII List of Abbreviations XI Chapter 1 Introduction 1 1.1. Motivation 1 1.2. Literature Review 2 1.3. Contributions of the Thesis 3 1.4. Organization 4 Chapter 2 Fundamentals of GPS 5 2.1. GPS Signal Architecture 5 2.2. GPS Signal Processing 7 2.2.1. Signal Acquisition 7 2.2.2. Signal Tracking 11 2.2.3. Navigation Data Extraction 21 2.2.4. Pseudorange Calculation 23 2.2.5. User Position Estimation 24 2.3. Doppler Frequency Shift 29 Chapter 3 Tracking Methods for High-Dynamic Vehicles 30 3.1. Carrier Tracking Loop Filter Implementation 30 3.1.1. Tracking Loop Filter Design 30 3.1.2. Simulation by Software 33 3.1.3. Analysis of Stability 34 3.1.4. Choosing Appropriate Bandwidth 39 3.2. Extended Kalman Filter 41 3.3. Doppler Aiding 47 Chapter 4 Receiver Architecture 49 4.1. Hardware Architecture 50 4.2. Software Architecture 53 4.3. Main Program Architecture with Tracking Methods 61 Chapter 5 Experimental Results and Discussions 62 5.1. Experimental Environment and Configuration 62 5.2. Experimental Test in Static Scenario 66 5.2.1. Test of Tracking Status 66 5.2.2. Test of Positioning Error 67 5.3. Simulation of High-Dynamic Scenario 72 5.3.1. Rocket Trajectory Model 72 5.3.2. Dynamic Scenario Simulation 74 5.4. Experimental Test in Dynamic Scenario 76 5.4.1. Test of Tracking Status 78 5.4.2. Test of Positioning Error 79 5.5. Experimental Test in the Actual Rocket Launch 81 5.6. Establishment of Rocket Trajectory 87 Chapter 6 Conclusions and Future Research 93 6.1. Conclusions 93 6.2. Future Research 94 References 95

    [1] K. Borre, D. M. Akos, N. Bertelsen, P. Rinder, and S. H. Jensen, A Software-Defined GPS and Galileo Receiver, First ed. Boston Basel Berlin: Birkhäuser, 2007.
    [2] Trajectory Calculation. Available: http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-01-unified-engineering-i-ii-iii-iv-fall-2005-spring-2006/systems-labs-06/spl2.pdf
    [3] B. Y. Chung, C. Chien, H. Samueli, and R. Jain, "Performance Analysis of an All-Digital BPSK Direct-Sequence Spread-Spectrum IF Receiver Architecture," IEEE Journal on Selected Areas in Communications, vol. 11, pp. 1096-1107, 1993.
    [4] GPS Creations. Available: http://www.gpscreations.com/NewFiles/GPS600%20Brochure.pdf
    [5] F. M. Gardner, Phaselock Techniques, 3 ed., publishes 2005.
    [6] C. J. Hegarty and E. Chatre, "Evolution of the Global Navigation Satellite System (GNSS)," Proceedings of the IEEE, vol. 96, pp. 1902-1917, Dec. 2008.
    [7] W. J. Hurd, J. I. Statman, and V. A. Vilnrotter, "High Dynamic GPS Receiver Using Maximum Likelihood Estimationand Frequency Tracking," , IEEE Transactions on Aerospace and Electronic Systems, vol. AES-23, pp. 425-437, Apr. 1987.
    [8] J. C. Juang and Y. H. Chen, "Phase/Frequency Tracking in a GNSS Software Receiver," IEEE Journal of Selected Topics in Signal Processing, vol. 3, pp. 651-660, Aug. 2009.
    [9] R. E. Kalman, "A New Approach to Linear Filtering and Preediction Problems," Journal of Basic Engineering, vol. 82, pp. 35-45, 1960.
    [10] E. D. Kaplan and C. J. Hegarty, Understanding GPS Principles and Applications, 2nd ed. Boston London: Artech House, 2006.
    [11] C. Kelley, J. Barnes, and J. Cheng, "OpenSource GPS Open Source Software for Learning about GPS," Proceedings of the ION GNSS, the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation, pp. 2800-2810, 2005.
    [12] NMEA Reference Manual. Available: https://www.sparkfun.com/datasheets/GPS/NMEA%20Reference%20Manual1.pdf
    [13] M. Markgraf, "VSB30 Phoenix GPS Tracking System - Flight Report," Deutsches Zentrum für Luft- und Raumfahrt (DLR), vol. VSB30-DLR-RP-0001, May. 2005.
    [14] M. Markgraf and O. Montenbruck, "Phoenix-HD - A Miniature GPS Tracking System for Scientific and Commercial Rocket Launches," 6th International Symposium on Launcher Technologies, pp. 8-11, 2005.
    [15] O. Montenbruck, W. Enderle, M. Schesny, V. Gabosch, S. Richen, and P. Turner, "Position-Velocity Aiding of a Mitel ORION Receiver for Sounding-Rocket Tracking," ION GPS, Sept. 2000.
    [16] NovAtel Ltd., SUPERSTAR II User Manual, 2005, Available: http://www.novatel.com/assets/Documents/Manuals/om-20000077.pdf
    [17] Open Source Introduction. Available: http://home.earthlink.net/~cwkelley/documentation.htm
    [18] P. A. Roncagliolo, C. E. De Blasis, and C. H. Muravchik, "GPS Digital Tracking Loops Design for High Dynamic Launching Vehicles," IEEE Ninth International Symposium on Spread Spectrum Techniques and Applications, pp. 41-45, Aug. 2006.
    [19] Spirent. GSS8000 Series Manual. Available: http://www.spirent.com/~/media/Datasheets/Positioning/GSS8000.pdf
    [20] Y. Sunahara and K. Yamashita, "An Approximate Method of State Estimation for Non-linear Dynamical Systems with State-dependent Noise," international Journal of Control, vol. 11, pp. 957-972, 1970.
    [21] T. Tsujii, T. Fujiwara, Y. Suganuma, H. Tomita, and I. Petrovski, "Development of INS-aided GPS Tracking Loop and Preliminary Flight Test," ICCAS-SICE, pp. 3585-3590, 18-21 Aug. 2009.
    [22] G. Welch and G. Bishop, "An Introduction to the Kalman Filter," Siggraph, Jul. 2006.
    [23] ZarlinkSemiconductor Ltd., GP2015 GPS Receiver RF Front End, DS4374, Issue 3.1, 2002, Available: http://pdf.datasheetcatalog.com/datasheet/zarlinksemiconductor/zarlink_GP2015_MAR_02.pdf
    [24] ZarlinkSemiconductor Ltd., GP4020 GPS Baseband Processor Design Manual, DM5280, Issue 3, 2002, Available: http://voiceprocessing.zarlink.com/zarlink/hs/dm5280-design-manual-jan2002.pdf
    [25] 張倬嘉, "微衛星太空級GPS接收器酬載之製作與測試," 國立成功大學電機工程研究所碩士論文, 2010.
    [26] 莊智清, 衛星導航, 初版 ed. 新北市: 全華圖書, 2012.

    下載圖示 校內:立即公開
    校外:2017-08-13公開
    QR CODE