簡易檢索 / 詳目顯示

研究生: 邱書逸
Chiu, Shu-I
論文名稱: 砂堆上顆粒流崩塌過程與機制之探討
Experimental study on the failure process of granular avalanches on a sand pile
指導教授: 戴義欽
Tai, Yih-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 70
中文關鍵詞: 砂堆實驗階段式崩塌理想破壞面內摩擦角安全係數
外文關鍵詞: Sand pile experiment, Sequential failure, Idealized curved surface, Internal friction angle, Factor of safety
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 坡面崩塌是台灣山區主要的自然災害威脅,而隨著人口的成長,台灣山區的開發也日益增加,另外也受到氣候變遷之影響,使得坡面崩塌災害發生的頻率和影響變得更加嚴重。為了解崩塌發生過程的行為與特性,本研究將現地崩塌諸多複雜之因素進行簡化,以小尺度砂堆實驗進行探討。實驗方面本研究將實驗分為兩個部份,以觀測位置作區分,分別為砂堆側面與砂堆表面的崩塌實驗,並以不同砂箱寬度進行實驗。採用單一顆粒材料,固定加砂位置,在砂堆上方持續供砂,待顆粒堆積到一定高度後,受重力作用之影響而發生崩塌,同時以高速攝影機紀錄崩塌發生之過程,將拍攝之影像透過影像處理技術進行處理並對崩塌過程之特性進分析。
    在砂堆側面崩塌實驗中,拍攝結果顯示其崩塌過程呈現多個階段且連續的過程,本研究將此崩塌模式稱為階段式崩塌。而透過影像處理結果顯示其破壞面上緣形狀略成圓弧型,且破壞面明顯由坡面坡趾處逐漸往坡頂發展,利用Tai et al. (2020) 提出之理想破壞面對各時間點之破壞面進行套疊,分析破壞面的穩定性及傳遞速度,可大致了解階段式崩塌過程之特性。
    在砂堆表面崩塌實驗中,不同寬度的砂箱,會造成崩塌過程的差異,依據觀察到的崩塌模式可初步分為兩類,第一類為階段式崩塌,其崩塌過程呈現多個階段且連續的過程,與砂堆側面崩塌實驗觀察到的結果類似,由坡面坡趾處逐漸往坡頂發展的過程,第二類為整體式崩塌,其崩塌過程為破壞面之整體滑動,崩塌起始之破壞面最上緣位在坡頂處,並非如同階段式崩塌位在坡趾處。

    Landslide/slope failure and the subsequent mass movements result in the major natural disasters in the mountain areas in Taiwan. This study is dedicated on investigating the failure processes of a slope failure using sand pile experiments with dry sand avalanches, where sand is supplied with a tiny volume rate until failure takes place. A CMOS-high-speed camera is utilized to capture the details of a sand pile within a sandbox, aiming at the insights into the detailed behavior and characteristics of avalanches triggered by the accumulation of sand pile. Since the transient failure surfaces in the experiments are found to be curved, the idealized curved surface (ICS) developed by Tai et al. (2020) is employed to mimic the failure surface of sand avalanches. With the ICS it is possible to approximate the plausible failure surface and to estimate the associated factor of safety, yielding valuable insights into the underlying mechanism of the sequential failure process. Two types of failure were observed in experiments, where a sequential failure takes place in the narrow sandboxes (2 cm, 6 cm, and 12 cm), and the single-release failure occurs in a wider sandboxes (15 cm and 18 cm). In the sequential failure, the sand pile progressively fails and the top of the failure surface propagates along the slope upwards. In the failure type of single release, the sand mass fails as a single block. In addition, further analysis goes into the various characteristics of the corresponding avalanches, such as the geometry of the sand pile, the shapes and propagation of the failure surface, as well as the internal friction angle. The analysis on these additional parameters provides a general understanding of the characteristics of the collapse process.

    摘要 i 英文延伸摘要 ii 誌謝 xi 目錄 xii 表格 xiv 圖片 xv 第一章. 緒論 1 1.1. 研究動機與目的 1 1.2. 文獻回顧 3 1.2.1. 崩塌類型 3 1.2.2. 顆粒崩塌 6 1.2.3. 理想破壞面 11 1.3. 研究方法 13 1.4. 本文架構 13 第二章. 實驗設置與方法 14 2.1. 實驗儀器與材料 14 2.2. 實驗設置 18 2.2.1. 砂堆側面崩塌實驗設置 18 2.2.2. 砂堆表面崩塌實驗設置 20 2.3. 實驗步驟與參數設定 22 2.4. 影像處理方法 27 2.4.1. 砂堆側面實驗影像處理 27 2.4.2. 砂堆表面實驗影像處理 29 第三章. 實驗結果與討論 31 3.1. 砂堆側面崩塌實驗結果 31 3.2. 理想破壞面在砂堆側面崩塌實驗中的應用 34 3.2.1. 建置理想破壞面 35 3.2.2. 破壞面之傳遞速度 39 3.2.3. 破壞面之邊坡穩定與顆粒內摩擦角分析 41 3.3. 砂堆表面崩塌實驗結果 46 3.3.1. 砂堆表面崩塌實驗討論 63 第四章. 結論與建議 67 4.1. 結論 67 4.2. 建議 68 參考文獻 69

    Al-Hashemi, H. M. B., & Al-Amoudi, O. S. B. (2018). A review on the angle of repose of granular materials. Powder technology, 330, 397–417.
    Bagnold, R. (1941). The physics of blown sand and desert dunes methuen london 265p.
    Briaud, J.-L. (2013). Geotechnical engineering: unsaturated and saturated soils. John Wiley & Sons.
    Cheng, N.-S., & Zhao, K. (2017). Difference between static and dynamic angle of repose of uniform sediment grains. International Journal of Sediment Research, 32(2), 149– 154.
    Cui, X., & Gray, J. (2013). Gravity-driven granular free-surface flow around a circular cylinder. Journal of Fluid Mechanics, 720, 314–337.
    Das, B. M., & Sobhan, K. (2014). Principles of geotechnical engineering. Cengage learning.
    Dunbavan, M. (1979). Sequential failure of granular slopes (Unpublished doctoral dissertation). James Cook University.
    Forterre, Y., & Pouliquen, O. (2008). Flows of dense granular media. Annu. Rev. Fluid Mech., 40, 1–24.
    Frette, V., Christensen, K., Malthe-Sørenssen, A., Feder, J., Jøssang, T., & Meakin, P. (1996). Avalanche dynamics in a pile of rice. Nature, 379(6560), 49–52.
    Froude, M. J., & Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18(8), 2161–2181.
    Geldart, D., Abdullah, E., Hassanpour, A., Nwoke, L., & Wouters, I. (2006). Characterization of powder flowability using measurement of angle of repose. China Particuology, 4(34), 104–107.
    Haralick, R. M., Sternberg, S. R., & Zhuang, X. (1987). Image analysis using mathematical morphology. IEEE transactions on pattern analysis and machine intelligence(4), 532– 550.
    Highland, L., Bobrowsky, P. T., et al. (2008). The landslide handbook: a guide to understanding landslides. US Geological Survey Reston, VA, USA.
    Hungr, O., Leroueil, S., & Picarelli, L. (2014). The varnes classification of landslide types, an update. Landslides, 11, 167–194.
    Komatsu, T. S., Inagaki, S., Nakagawa, N., & Nasuno, S. (2001). Creep motion in a granular pile exhibiting steady surface flow. Physical review letters, 86(9), 1757.
    Koukis, G., & Ziourkas, C. (1991). Slope instability phenomena in greece: a statistical analysis. Bulletin of the International Association of Engineering Geology(43), 47–60.
    Liu, C.-h., Jaeger, H., & Nagel, S. R. (1991). Finite-size effects in a sandpile. Physical Review A, 43(12), 7091.
    Müller, D., Fimbinger, E., & Brand, C. (2021). Algorithm for the determination of the angle of repose in bulk material analysis. Powder Technology, 383, 598–605.
    Nagel, S. R. (1992). Instabilities in a sandpile. Reviews of Modern Physics, 64(1), 321.
    Otsu, N. (1979). Athresholdselectionmethodfromgray-levelhistograms. IEEEtransactions on systems, man, and cybernetics, 9(1), 62–66.
    Qi, X.-H., & Li, D.-Q. (2018). Effect of spatial variability of shear strength parameters on critical slip surfaces of slopes. Engineering Geology, 239, 41–49.
    Rackl, M., Grötsch, F. E., Rusch, M., & Fottner, J. (2017). Qualitative and quantitative assessment of 3d-scanned bulk solid heap data. Powder Technology, 321, 105–118.
    Tai, Y.-C., Ko, C.-J., Li, K.-D., Wu, Y.-C., Kuo, C.-Y., Chen, R.-F., & Lin, C.-W. (2020). An idealized landslide failure surface and its impacts on the traveling paths. Frontiers in Earth Science, 8, 313.
    Van Burkalow, A. (1945). Angle of repose and angle of sliding friction: an experimental study. Geological Society of America Bulletin, 56(6), 669–707.
    Varnes, D. J. (1978). Slope movement types and processes. Special report, 176, 11–33.
    Yoshioka, N. (2003). A sandpile experiment and its implications for self-organized criticality and characteristic earthquake. Earth, planets and space, 55(6), 283–289.
    Zhou, Y., Xu, B. H., Yu, A.-B., & Zulli, P. (2002). An experimental and numerical study of the angle of repose of coarse spheres. Powder technology, 125(1), 45–54.
    周姿妤. (2021). 同步化量測流動崩塌面積與質流量之陡斜率砂箱實驗. 國立臺灣大學工學院土木工程學系碩士論文.
    松倉公憲, & 恩田裕一. (1989). 安息角: 定義と測定法にまつわる諸問題. 筑波大学水理実験センター報告, 13, 27-35.
    林雪美. (2004). 台灣地區近三十年自然災害的時空特性. 師大地理研究 , 第41 期, 99–128.
    柯奇均, 王福杰, 王子睿, & 戴義欽. (2020). 沙堆的週期性顆粒崩塌與坡面穩定性分析. 第18 屆大地工程學術研究研究討論會.
    行政院農業委員會水土保持局. (2017). 水土保持手冊.
    黃郁婷. (2011). 剪力強度折減法應用於動態邊坡穩定性之研究. 國立成功大學資源工程學系碩士論文.

    無法下載圖示 校內:2026-08-01公開
    校外:2026-08-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE