簡易檢索 / 詳目顯示

研究生: 劉哲瑋
Liu, Che-Wei
論文名稱: 單相電網形成變流器之研製
Design and Implementation of Single Phase Grid Forming Inverter
指導教授: 張簡樂仁
Chang-Chien, Le-Ren
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 107
中文關鍵詞: 電網形成變流器並聯控制虛擬阻抗併網控制
外文關鍵詞: Grid-Forming Inverter, Parallel Control, Virtual Impedance, Grid-tied Control
相關次數: 點閱:100下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 再生能源的使用率日益增加促進分散式電源形成微電網,微電網中最核心的設備就是電網形成變流器。電網形成變流器應能夠在離網並聯模式或併網模式下運行。本論文旨在研製單相全橋式變流器,使用電網形成變流器的控制架構實現變流器離網並聯控制、併網功率控制。變流器並聯系統使用兩台單相全橋式變流器與垂降控制的架構,實現變流器根據負載的功率需求調整變流器的輸出。此外,本論文採用虛擬阻抗的方法抑制因輸電線阻抗相異造成的循環電流過大的問題。併網控制部分實現注入實功率控制與低電壓穿越控制。為了精進控制效能,本論文使用PSIM模擬軟體設計硬體電路參數、控制電路參數,並使用MATLAB Simscape最佳化雙回路控制中的PI參數。實作以單相全橋式變流器搭配數位訊號處理器TMS320F28335驗證其效能。

    The increasing use of renewable energy is promoting the distributed generation to form microgrids. Within microgrids, the most crucial component of power electronic equipment is the grid forming inverter. The grid forming inverter should be able to operate either in off-grid paralleling mode or grid-tied mode. This thesis aims to develop single-phase full-bridge inverters, utilizing the control architecture of grid-forming inverter to achieve off-grid paralleling operation and grid-tied operation. The parallel inverter configuration employs two single-phase full-bridge inverters with droop control to adjust the power outputs based on load demand. A virtual impedance method is introduced to suppress circulating currents between two parallel inverters due to different line impedances. When the inverter operates in grid-tied mode, a low-voltage ride-through control is introduced to smoothly handle voltage transients. To achieve better control performance, this thesis employs PSIM simulation software to design control loop parameters. Furthermore, the MATLAB Sim-scape is utilized to optimize the PI parameters in dual-loop control. The design is validated using a single-phase full-bridge inverter with the digital signal processor TMS320F28335.

    摘要 II Abstract III SUMMARY IV 誌謝 XIV 目錄 XV 表目錄 XVIII 圖目錄 XIX 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 1 1.3 文獻回顧 2 1.4 論文章節概要 4 第二章 電網形成變流器操作原理 6 2.1 前言 6 2.2 電網形成變流器架構 7 2.2.1 正交訊號產生器 8 2.2.2 增強式平均功率計算器 10 2.2.3 垂降控制法 13 2.3 單相全橋變流器PI參數最佳化 18 2.3.1 開回路控制模型 18 2.3.2 雙回路控制 20 2.3.3 PI參數自動調節方法與效率計算 21 2.4 正弦脈波寬度調變 28 第三章 電網形成變流器離網並聯控制 32 3.1 前言 32 3.2 鎖相回路 33 3.3 變流器並聯控制(離網) 36 3.3.1 循環電流分析 37 3.3.2 虛擬阻抗設計 38 3.3.3 兩台變流器並聯分析 40 第四章 電網形成變流器併網控制 42 4.1 前言 42 4.2 注入實功率控制 43 4.3 低電壓穿越控制 44 4.3.1 改善電流發散的方法 44 4.3.2 改善暫態電流的方法 45 第五章 模擬與實測結果 47 5.1 前言 47 5.2 控制參數設計 47 5.3 模擬架構與結果 48 5.4 實驗架構 55 5.4.1 硬體電路設計 58 5.4.2 數位訊號處理器與軟體規劃 63 5.5 實測驗證 65 5.5.1 離網控制之實測 65 5.5.2 併網控制之實測 72 第六章 結論與未來展望 78 6.1 結論 78 6.2 未來展望 79 參考文獻 81

    [1] Sanaullah Ahmad, Sana Sardar, Azzam Ul Asar and Babar Noor, “Impact of Distributed Generation on the Reliability of Local Distribution System” International Journal of Advanced Computer Science and Applica-tions(IJACSA), 8(6), 2017.
    [2] J. Rocabert, A. Luna, F. Blaabjerg and P. Rodríguez, "Control of Power Converters in AC Microgrids," in IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4734-4749, Nov. 2012.
    [3] L. Shu, W. Chen and X. Jiang, "Decentralized Control for Fully Modular Input-Series Output-Parallel (ISOP) Inverter System Based on the Active Power Inverse-Droop Method," in IEEE Transactions on Power Electron-ics, vol. 33, no. 9, pp. 7521-7530, Sept. 2018.
    [4] J. Cai, C. Chen, S. Duan and D. Yang, "Centralized control of large capac-ity parallel connected power conditioning system for battery energy stor-age system in microgrid," 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, pp. 409-413, 2014.
    [5] K. T. Tan, X. Y. Peng, P. L. So, Y. C. Chu and M. Z. Q. Chen, "Centralized Control for Parallel Operation of Distributed Generation Inverters in Mi-crogrids," in IEEE Transactions on Smart Grid, vol. 3, no. 4, pp. 1977-1987, Dec. 2012.
    [6] H. -C. Chen, C. -Y. Lu and U. S. Rout, "Decoupled Master-Slave Current Balancing Control for Three-Phase Interleaved Boost Converters," in IEEE Transactions on Power Electronics, vol. 33, no. 5, pp. 3683-3687, May 2018.
    [7] Tianzhi Fang, Xinbo Ruan, Lan Xiao and Aizhong Liu, "An improved distributed control strategy for parallel inverters," 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, pp. 3500-3505, 2008.
    [8] Usman Bashir Tayab, Mohd Azrik Bin Roslan, Leong Jenn Hwai, Mu-hammad Kashif,A review of droop control techniques for mi-crogrid,Renewable and Sustainable Energy Reviews, vol. 76, pp. 717-727, 2017.
    [9] J. M. Guerrero, Luis Garcia de Vicuna, J. Matas, M. Castilla and J. Miret, "Output impedance design of parallel-connected UPS inverters with wire-less load-sharing control," in IEEE Transactions on Industrial Electronics, vol. 52, no. 4, pp. 1126-1135, Aug. 2005.
    [10] A. B. Taha and S. F. Babiker, "Design and Simulation of Voltage Source Grid Connected Inverter (VSI)," 2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), Khartoum, Sudan, pp. 1-5, 2018.
    [11] S. Kharjule, "Voltage source inverter," 2015 International Conference on Energy Systems and Applications, Pune, India, pp. 537-542, 2015.
    [12] D. Pattabiraman, "Current source inverter with grid forming control," Electric Power Systems Research, pp. 226, 2024.
    [13] G. M. S. Azevedo, M. C. Cavalcanti, F. Bradaschia, F. A. S. Neves, J. Ro-cabert and P. Rodriguez, "Enhanced power calculator for droop control in single-phase systems," 2011 IEEE Energy Conversion Congress and Ex-position, Phoenix, AZ, USA, pp. 391-396, 2011.
    [14] “PID Controller Tuning in Simulink”, https://www.mathworks.com/help/slcontrol/ug/automated-tuning-of-simulink-pid-controller-block.html;jsessionid=4e29972c23976ff8577d2924f928#d126e1383
    [15] “PID Autotuning for a Plant Method in Simulink”, https://www.mathworks.com/help/slcontrol/ug/pid-autotuning-for-a-plant-modeled-in-simulink.html
    [16] Ray-Shyang Lai and K. D. T. Ngo, "A PWM method for reduction of switching loss in a full-bridge inverter," in IEEE Transactions on Power Electronics, vol. 10, no. 3, pp. 326-332, May 1995.
    [17] 蔡維哲, ”單相雙極性電壓切換DC-AC變流器之分析與設計,” 碩士論文, 東海大學, 2012.
    [18] 劉家樺, ”柔性切換變頻器之研製,” 碩士論文, 國立宜蘭大學, 2010.
    [19] J. Xu, H. Qian, Y. Hu, S. Bian and S. Xie, "Overview of SOGI-Based Single-Phase Phase-Locked Loops for Grid Synchronization Under Complex Grid Conditions," in IEEE Access, vol. 9, pp. 39275-39291, 2021.
    [20] M. A. Roslan, M. S. Ahmad, M. A. M. Isa and N. H. A. Rahman, "Circu-lating current in parallel connected inverter system," 2016 IEEE Interna-tional Conference on Power and Energy (PECon), Melaka, Malaysia, pp. 172-177, 2016.
    [21] 江智弘, ” 兩並聯整流器間循環電流之抑制研究,” 碩士論文, 國立成功大學, 2013.
    [22] A. Micallef, M. Apap, C. Spiteri-Staines and J. M. Guerrero, "Performance comparison for virtual impedance techniques used in droop controlled is-landed microgrids," 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Capri, Italy, pp. 695-700, 2016.
    [23] Lu Jiaxin, Zhang Yingchao, Qian Xisen, Long Jiangtao and Zhao Zhengming, "A novel virtual impedance method for droop controlled parallel UPS inverters with wireless control," 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Bei-jing, China, pp. 1-5, 2014.
    [24] 台灣電力公司,再生能源發電系統併聯技術要點,2013。
    [25] D. Pattabiraman, R. H. Lasseter and T. M. Jahns, "Transient Stability Modeling of Droop-Controlled Grid-Forming Inverters with Fault Current Limiting," 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, pp. 1-5, 2020.
    [26] Hyosung Kim and Kyoung-Hwan Kim, "Filter design for grid connected PV inverters," 2008 IEEE International Conference on Sustainable Energy Technologies, Singapore, pp. 1070-1075, 2008.
    [27] NTH4L075N065SC1, Datasheet, ONSEMI, 2023.
    [28] TMS320F2833x, TMS320F2823x Real-Time Microcontrollers datasheet , TEXAS INSTRUMENTS, 2022.

    無法下載圖示 校內:2026-07-01公開
    校外:2026-07-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE