簡易檢索 / 詳目顯示

研究生: 施皓文
Shih, Hao-Wen
論文名稱: 以磁控濺鍍法沉積氧化矽鋅錫薄膜及其光電元件之研究
Investigation of Silicon Zinc Tin Oxide Thin Films and Their Optoelectrical Applications Fabricated by RF Sputtering
指導教授: 張守進
Chang, Shoou-Jinn
共同指導教授: 陳志方
Chen, Jone-Fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 103
中文關鍵詞: 氧化矽鋅錫光感測器薄膜電晶體光電晶體
外文關鍵詞: Silicon zinc tin oxide, MSM Photodetector, Thin-film transistor, Phototransistor
相關次數: 點閱:76下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用射頻磁控濺鍍法在不同製程條件下沉積了氧化矽鋅錫薄膜,並探討其特性。隨後,將這些氧化矽鋅錫薄膜應用於光電元件,包括紫外光感測器、薄膜電晶體和光電晶體。
    在第一部分中,我們通過調整二氧化矽的濺鍍瓦數和退火溫度,研究了不同特性的氧化矽鋅錫薄膜的結構、材料和光學特性。結果顯示,所有薄膜都呈非晶結構,且具有均勻的表面。經歷300°C和400°C退火的樣品方均根粗糙度大約為1.5奈米。經歷500°C退火的樣品方均根粗糙度大約為0.8奈米。隨著二氧化矽濺鍍瓦數的增加,薄膜中的氧空缺減少,並且光能隙增加。
    在第二部分中,我們使用磁控濺鍍法製備了氧化矽鋅錫光感測器,並通過調整二氧化矽濺鍍瓦數來探討其特性。結果顯示,SZTO20及SZTO40光感測器呈現歐姆型態的特性,而SZTO60及SZTO80光感測器則呈現蕭基型態的特性,並且暗電流隨著二氧化矽濺鍍瓦數的增加而減少。此外,二氧化矽濺鍍瓦數對響應時間有顯著影響,隨著濺鍍瓦數的增加,響應時間減少。我們在二氧化矽濺鍍瓦80W的條件下製造出表現最好的元件,有最佳的光暗電流比252.5倍,最好的拒斥比 5.25 ×103 和最快的開關時間,上升時間為18秒,下降時間為22秒。
    在第三部分中,我們使用磁控濺鍍法製備了氧化矽鋅錫薄膜電晶體。通過控制二氧化矽濺鍍瓦數,調節自由載子和缺陷的數量,從而改變薄膜電晶體的電特性。研究結果顯示,二氧化矽濺鍍瓦數對漏電流有明顯影響。此外,在500°C的退火處理後,我們成功改善了薄膜電晶體的特性,並得到SZTO40經過500°C退火一小時的元件有著最好的開關電流比 7.24×104 ,場效電子遷移率 0.37 cm2/V s, 臨界電壓為-6.13 V, 次臨界擺幅為為 2.15 V/dec。此外,我們同樣成功製作出SZTO40光電晶體,並得到響應拒斥比為2.84×105。

    In this study, silicon-zinc-tin oxide (SZTO) thin films were deposited using radio frequency magnetron sputtering under different process conditions, and their characteristics were investigated. Subsequently, these SZTO thin films were applied in optoelectronic devices, including ultraviolet (UV) photodetectors, thin-film transistors, and phototransistors.
    In the first part, we studied the structure, material, and optical properties of different types of SZTO thin films by adjusting the sputtering power of silicon oxide and annealing temperature. The results showed that all the thin films exhibited an amorphous structure and had a uniform surface. The root-mean-square roughness of the samples annealed at 300°C and 400°C was approximately 1.5 nanometers, while the roughness of the samples annealed at 500°C was about 0.8 nanometers. As the sputtering power of silicon oxide increased, the oxygen vacancies in the thin films decreased, and the optical bandgap increased.
    In the second part, we fabricated SZTO photodetectors using magnetron sputtering and investigated their characteristics by adjusting the sputtering power of silicon oxide. The results showed that SZTO20 and SZTO40 photodetectors exhibited ohmic characteristics, while SZTO60 and SZTO80 photodetectors exhibited Schottky characteristics. The dark current decreased with an increase in the sputtering power of silicon oxide. Moreover, the sputtering power of silicon oxide had a significant impact on the response time, with a decrease in response time as the sputtering power increased. At the optimal sputtering power of silicon oxide, we obtained the best-performing device with a maximum photo/dark current ratio of 252.5, a rejection ratio of 5.25 × 103, and the fastest switching time with a rising time of 18 seconds and a falling time of 22 seconds.
    In the third part, we prepared SZTO thin-film transistors using magnetron sputtering. By controlling the sputtering power of silicon oxide, we adjusted the number of free carriers and defects to modify the electrical characteristics of the thin-film transistors. The results showed that the sputtering power of silicon oxide had a significant influence on the drain current leakage. Furthermore, after annealing at 500°C, we successfully improved the characteristics of the thin-film transistors. The SZTO40 device annealed at 500°C for one hour exhibited the best performance with a switch current ratio of 7.24 × 104, a field-effect electron mobility of 0.37 cm2/V s, a threshold voltage of -6.13 V, and a subthreshold swing of 2.15 V/dec. Additionally, we also successfully fabricated SZTO40 photodetectors and obtained a response rejection ratio of 2.84 × 105.

    摘要 i Abstract iii Content vi Table Captions x Figure Captions xi Chapter 1. Introduction 1 1.1 Background and Motivation 1 1.2 Overview of SZTO Material 2 1.3 Organization of This Thesis 3 Reference 5 Chapter 2. Relevant Theory and Experimental Equipment 8 2.1 Theory of photodetector 8 2.1.1 Responsivity of the Photodetector 10 2.1.2 Rejection ratio of the Photodetector 10 2.1.3 Rising & Falling Time of the Photodetector 11 2.2 Theory of Thin-Film Transistor 12 2.2.1 Field-Effect Mobility (μeff) 15 2.2.2 Threshold Voltage (Vth) 16 2.2.3 Onoff Current Ratio (IonIoff) 17 2.2.4 Subthreshold Swing (SS) 17 2.3 Experimental Equipment 18 2.3.1 RF Sputtering System 18 2.3.2 Thermal Evaporation System 22 2.3.3 Plasma-enhanced Chemical Vapor Deposition (PECVD) 23 2.3.4 X-ray Diffraction Analysis (XRD) 25 2.3.5 X-ray Photoelectron Spectroscopy (XPS) 28 2.3.6 Atomic Force Microscopes (AFM) 28 2.3.7 Transmission electron microscopy (TEM) 29 Reference 30 Chapter 3. Characteristics of SZTO Thin Film 32 3.1 Growth of SZTO Thin Film 32 3.2 Atomic Force Microscopes (AFM) Analysis 34 3.3 X-ray Diffraction (XRD) Analysis 37 3.4 X-ray photoelectron spectroscopic (XPS) analysis 38 3.5 Optical Characteristics 41 Reference 43 Chapter 4. The Fabrication and Characteristics of SZTO MSM UV Photodetector 44 4.1 Introduction 44 4.2 Fabrication of SZTO MSM Photodetectors 45 4.3 Structural and Elemental Properties Verification of SZTO MSM Photodetectors 47 4.3.1 Transmission Electron Microscopy (TEM) Analysis 47 4.3.2 Energy Dispersive Spectra (EDS) Analysis 49 4.4 Characteristics of SZTO MSM Photodetectors 51 4.4.1 Characteristics of Different Co-sputter Powers in SZTO MSM Photodetectors 51 4.4.2 Time-Resolved Response of SZTO MSM Photodetectors 53 4.5 Summary 57 Reference 58 Chapter 5. The Fabrication and Characteristics of SZTO Thin-Film Transistors 61 5.1 Introduction 61 5.2 Fabrication Process of SZTO Thin-Film Transistors 62 5.3 Structural and Elemental Properties Verification of SZTO Thin-Film Transistors 64 5.3.1 Transmission Electron Microscopy (TEM) Analysis 64 5.3.2 Energy Dispersive Spectra (EDS) Analysis 66 5.4 Characteristics of SZTO Thin-Film Transistors 68 5.4.1 Characteristics of Different Co-sputter Powers in SZTO Thin-Film Transistors 68 5.4.2 Characteristics of Different annealing temperature in SZTO Thin-Film Transistors 73 5.4.3 Characteristics of SZTO Thin-Film Phototransistors 85 5.5 Reliability of SZTO Thin-Film Transistors 92 5.6 Summary 96 Reference 97 Chapter 6. Conclusion and Future Work 100 6.1 Conclusion 100 6.1.1 SZTO Thin Film 100 6.1.2 SZTO MSM Photodetectors 101 6.1.3 SZTO Thin-Film Transistors 101 6.2 Future Work 102 Reference 103

    Fortunato E, Barquinha P, Martins R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater. 2012 Jun 12;24(22):2945-86. doi: 10.1002/adma.201103228. Epub 2012 May 10. PMID: 22573414.
    L.-C.Liu, J.-S.Chen, andJ.-S.Jeng, “Role of oxygen vacancies on the bias illumination stress stability of solution-processed zinc tin oxide thin film transistors,” Appl. Phys. Lett., vol. 105, no. 2, p. 23509, Jul.2014.
    X. Xu, L. Feng, S. He, Y. Jin and X. Guo, "Solution-Processed Zinc Oxide Thin-Film Transistors With a Low-Temperature Polymer Passivation Layer," in IEEE Electron Device Letters, vol. 33, no. 10, pp. 1420-1422, Oct. 2012,
    J.H. Ko, I.H. Kim, D. Kim, K.S. Lee, T.S. Lee, B. Cheong, W.M. Kim, Transparent and conducting Zn-Sn-O thin films prepared by combinatorial approach, Applied Surface Science, Volume 253, Issue 18, 2007, Pages 7398-7403, ISSN 0169-4332,
    Madambi K. Jayaraj, Kachirayil J. Saji, Kenji Nomura, Toshio Kamiya, Hideo Hosono; Optical and electrical properties of amorphous zinc tin oxide thin films examined for thin film transistor application. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 1 March 2008; 26 (2): 495–501.
    Z.‐C. Jin, I. Hamberg, C. G. Granqvist; Optical properties of sputter‐deposited ZnO:Al thin films. Journal of Applied Physics 15 November 1988; 64 (10): 5117–5131.
    Frenzel, H., Dörfler, T., Schlupp, P., von Wenckstern, H. and Grundmann, M. (2015), Long-throw magnetron sputtering of amorphous Zn–Sn–O thin films at room temperature. Phys. Status Solidi A, 212: 1482-1486.
    W.B. Jackson, G.S. Herman, R.L. Hoffman, C. Taussig, S. Braymen, F. Jeffery, J. Hauschildt, Zinc tin oxide transistors on flexible substrates, Journal of Non-Crystalline Solids, Volume 352, Issues 9–20, 2006, Pages 1753-1755, ISSN 0022-3093
    J. F. Conley, "Instabilities in Amorphous Oxide Semiconductor Thin-Film Transistors," in IEEE Transactions on Device and Materials Reliability, vol. 10, no. 4, pp. 460-475, Dec. 2010.
    M. J. Powell, C. van Berkel, I. D. French, D. H. Nicholls; Bias dependence of instability mechanisms in amorphous silicon thin‐film transistors. Appl. Phys. Lett. 19 October 1987; 51 (16): 1242–1244.
    Miao, S., Yang, Q., Ai, X., Yang, K., Deng, J., Guo, Y., Yuan, S., & Zhang, H. (2020). Effect of oxygen vacancies in the electron transfer layer SiZnSnO on the performance of perovskite solar cells. Journal of Alloys and Compounds, 835.
    Lee, B. H., Lee, J. Y., Kumar, A., & Lee, S. Y. (2022). Phase-Controlled Artificial SiZnSnO/P(VDF-TrFE) Synaptic Devices with a High Dynamic Range for Neuromorphic Computing. Advanced Electronic Materials, 8(12). https://doi.org/10.1002/aelm.202200810
    Chuanjia Wu, Xifeng Li, Jianguo Lu, Zhizhen Ye, Jie Zhang, Tingting Zhou, Rujie Sun, Lingxiang Chen, Bin Lu, Xinhua Pan; Characterization of amorphous Si-Zn-Sn-O thin films and applications in thin-film transistors. Appl. Phys. Lett. 19 August 2013; 103 (8): 082109.
    F.Kayaci, S.Vempati, I.Donmez, N.Biyikli, andT.Uyar, “Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density,” Nanoscale, vol. 6, no. 17, pp. 10224–10234, 2014.L.Schmidt-Mende andJ. L.MacManus-Driscoll, “ZnO – nanostructures, defects, and devices,” Mater. Today, vol. 10, no. 5, pp. 40–48, 2007.
    Choi, J. Y., Heo, K., Cho, K. S., Hwang, S. W., Kim, S., & Lee, S. Y. (2016). Engineering of band gap states of amorphous SiZnSnO semiconductor as a function of Si doping concentration. Scientific Reports, 6.
    Sang, L., Liao, M., & Sumiya, M. (2013). A comprehensive review of semiconductor ultraviolet photodetectors: From thin film to one-dimensional nanostructures. In Sensors (Switzerland) (Vol. 13, Issue 8). https://doi.org/10.3390/s130810482
    Jia, M., Wang, F., Tang, L., Xiang, J., Teng, K. S., & Lau, S. P. (2020). High-Performance Deep Ultraviolet Photodetector Based on NiO/β-Ga2O3 Heterojunction. Nanoscale Research Letters, 15(1). https://doi.org/10.1186/s11671-020-3271-9
    Petti, L., Münzenrieder, N., Vogt, C., Faber, H., Büthe, L., Cantarella, G., Bottacchi, F., Anthopoulos, T. D., & Tröster, G. (2016). Metal oxide semiconductor thin-film transistors for flexible electronics. In Applied Physics Reviews (Vol. 3, Issue 2). https://doi.org/10.1063/1.4953034
    Rim, Y. S. (2020). Review of metal oxide semiconductors-based thin-film transistors for point-of-care sensor applications. Journal of Information Display, 21(4). https://doi.org/10.1080/15980316.2020.1714762
    Tiwari, N., Nirmal, A., Kulkarni, M. R., John, R. A., & Mathews, N. (2020). Enabling high performance n-type metal oxide semiconductors at low temperatures for thin film transistors. In Inorganic Chemistry Frontiers (Vol. 7, Issue 9). https://doi.org/10.1039/d0qi00038h
    Thomas, S. R., Pattanasattayavong, P., & Anthopoulos, T. D. (2013). Solution-processable metal oxide semiconductors for thin-film transistor applications. Chemical Society Reviews, 42(16). https://doi.org/10.1039/c3cs35402d
    Eda, G., Fanchini, G., & Chhowalla, M. (2008). Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology, 3(5).
    Koh, J., Lu, Y., Wronski, C. R., Kuang, Y., Collins, R. W., Tsong, T. T., & Strausser, Y. E. (1996). Correlation of real time spectroellipsometry and atomic force microscopy measurements of surface roughness on amorphous semiconductor thin films. Applied Physics Letters, 69(9).
    Vesel, A., Mozetic, M., & Zalar, A. (2007). XPS study of oxygen plasma activated PET. Vacuum, 82(2 SPEC. ISS.). https://doi.org/10.1016/j.vacuum.2007.07.021
    Boronin, A. I., Koscheev, S. v., & Zhidomirov, G. M. (1998). XPS and UPS study of oxygen states on silver. Journal of Electron Spectroscopy and Related Phenomena, 96(1–3). https://doi.org/10.1016/S0368-2048(98)00221-7
    T.Rakshit, I.Manna, andS. K.Ray, “Effect of SnO2 concentration on the tuning of optical and electrical properties of ZnO-SnO2 composite thin films,” J. Appl. Phys., vol. 117, no. 2, p. 25704, Jan.2015.
    Nomura, K. et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature. 432, 488–492 (2004).
    Hosono, H., Nomura, K., Ogo, Y., Uruga, T. & Kamiya, T. Factors controlling electron transport properties in transparent amorphous oxide semiconductors. J. Non-Cryst. Solids. 354, 2796–2800 (2008).
    Barquinha, P. et al. Toward high-performance amorphous GIZO TFTs. J. Electrochem. Soc. 156, H161–H168 (2009).
    Park, S.-H. K. et al. Transparent ZnO thin film transistor array for the application of transparent AM-OLED display. SID Int. Symp. Digest Tech. 37, 25–28 (2006).
    Hirao, T. et al. Distinguished paper: High mobility top-gate zinc oxide thin-film transistors (ZnO-TFTs) for active-matrix liquid crystal displays. SID Int. Symp. Digest Tech. Papers. 18–20 (2006).
    L.-C.Liu, J.-S.Chen, and J.-S.Jeng, “Role of oxygen vacancies on the bias illumination stress stability of solution-processed zinc tin oxide thin film transistors,” Appl. Phys. Lett., vol. 105, no. 2, p. 23509, Jul.2014.
    T.Rakshit, I.Manna, andS. K.Ray, “Effect of SnO2 concentration on the tuning of optical and electrical properties of ZnO-SnO2 composite thin films,” J. Appl. Phys., vol. 117, no. 2, p. 25704, Jan.2015
    S.-J. S. and C. G. C. and Y. H. H. and B.-S.Bae, “High performance solution-processed amorphous zinc tin oxide thin film transistor,” J. Phys. D. Appl. Phys., vol. 42, no. 3, p. 35106, 2009.
    P.Nunes, E.Fortunato, P.Tonello, F.Braz Fernandes, P.Vilarinho, andR.Martins, “Effect of different dopant elements on the properties of ZnO thin films,” Vacuum, vol. 64, no. 3, pp. 281–285, 2002.
    H. Q.Chiang, J. F.Wager, R. L.Hoffman, J.Jeong, andD. A.Keszler, “High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer,” Appl. Phys. Lett., vol. 86, no. 1, p. 13503, Dec.2004.
    J.Heo, S.Bok Kim, andR. G.Gordon, “Atomic layer deposited zinc tin oxide channel for amorphous oxide thin film transistors,” Appl. Phys. Lett., vol. 101, no. 11, p. 113507, Sep.2012.
    M. K.Jayaraj, K. J.Saji, K.Nomura, T.Kamiya, andH.Hosono, “Optical and electrical properties of amorphous zinc tin oxide thin films examined for thin film transistor application,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom., vol. 26, no. 2, pp. 495–501, Mar.2008.
    Chuanjia Wu, Xifeng Li, Jianguo Lu, Zhizhen Ye, Jie Zhang, Tingting Zhou, “Characterization of amorphous Si-Zn-SnO thin films and applications in thin-film transistors,” Appl. Phys. Lett. 103, 082109 (2013)
    Sangmin Han and Sang Yeol Lee, “Influence of Wet Annealing on the Performance of SiZnSnO Thin Film Transistors,” TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS Vol. 16, No. 1, pp. 34-36, February 25, 2015
    Sang Yeol Lee, Jun Young Choi, “The Influence of Silicon Doping on Electrical Characteristics of Solution Processed Silicon Zinc Tin Oxide Thin Film Transistor,” TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS Vol. 16, No. 2, pp. 103-105, April 25, 2015
    Fortunato, E., Barquinha, P., & Martins, R. (2012). Oxide semiconductor thin-film transistors: A review of recent advances. In Advanced Materials (Vol. 24, Issue 22). https://doi.org/10.1002/adma.201103228
    Talapin, D. v., & Murray, C. B. (2005). Applied physics: PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science, 310(5745). https://doi.org/10.1126/science.1116703
    Yu, X., Marks, T. J., & Facchetti, A. (2016). Metal oxides for optoelectronic applications. Nature Materials, 15(4). https://doi.org/10.1038/nmat4599
    Kim, Y. H., Heo, J. S., Kim, T. H., Park, S., Yoon, M. H., Kim, J., Oh, M. S., Yi, G. R., Noh, Y. Y., & Park, S. K. (2012). Flexible metal-oxide devices made by room-temperature photochemical activation of solĝ€"gel films. Nature, 489(7414). https://doi.org/10.1038/nature11434
    Banger, K. K., Yamashita, Y., Mori, K., Peterson, R. L., Leedham, T., Rickard, J., & Sirringhaus, H. (2011). Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a “sol-gel on chip” process. Nature Materials, 10(1). https://doi.org/10.1038/nmat2914
    Park, J. S., Maeng, W. J., Kim, H. S., & Park, J. S. (2012). Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. In Thin Solid Films (Vol. 520, Issue 6). https://doi.org/10.1016/j.tsf.2011.07.018
    Kamiya, T., & Hosono, H. (2010). Material characteristics and applications of transparent amorphous oxide semiconductors. In NPG Asia Materials (Vol. 2, Issue 1). https://doi.org/10.1038/asiamat.2010.5
    Greiner, M. T., Helander, M. G., Tang, W. M., Wang, Z. bin, Qiu, J., & Lu, Z. H. (2012). Universal energy-level alignment of molecules on metal oxides. Nature Materials, 11(1).
    L.-C.Liu, J.-S.Chen, andJ.-S.Jeng, “Role of oxygen vacancies on the bias illumination stress stability of solution-processed zinc tin oxide thin film transistors,” Appl. Phys. Lett., vol. 105, no. 2, p. 23509, Jul.2014.
    Uraoka, Y., Bermundo, J. P., Fujii, M. N., Uenuma, M., & Ishikawa, Y. (2019). Degradation phenomenon in metal-oxide-semiconductor thin-film transistors and techniques for its reliability evaluation and suppression. Japanese Journal of Applied Physics, 58(9).
    S.Cho et al., “The role of oxygen in dramatically enhancing the electrical properties of solution-processed Zn-Sn-O thin-film transistors,” J. Mater. Chem. C, vol. 5, no. 26, pp. 6521–6526, 2017.
    T.Rakshit, I.Manna, andS. K.Ray, “Effect of SnO2 concentration on the tuning of optical and electrical properties of ZnO-SnO2 composite thin films,” J. Appl. Phys., vol. 117, no. 2, p. 25704, Jan.2015.
    S.-J. S. and C. G. C. and Y. H. H. andB.-S.Bae, “High performance solution-processed amorphous zinc tin oxide thin film transistor,” J. Phys. D. Appl. Phys., vol. 42, no. 3, p. 35106, 2009.
    B. Kim and S. Y. Lee, “Effect of Annealing Temperature on the Electrical Performance of SiZnSnO Thin Film Transistors Fabricated by Radio Frequency Magnetron Sputtering,” Transactions on Electrical and Electronic Materials, vol. 18, no. 1, pp. 55–57, Feb. 2017.
    Liu, L. N., Tang, W. M., & Lai, P. T. (2019). Advances in la-based high-k dielectrics for MOS applications. In Coatings (Vol. 9, Issue 4).
    Oh, J. H., Kwak, S. Y., Yang, S. C., & Bae, B. S. (2010). Highly condensed fluorinated methacrylate hybrid material for transparent low- k passivation layer in LCD-TFT. ACS Applied Materials and Interfaces, 2(3).
    Hong, S., Park, S. P., Kim, Y. G., Kang, B. H., Na, J. W., & Kim, H. J. (2017). Low-temperature fabrication of an HfO2 passivation layer for amorphous indium-gallium-zinc oxide thin film transistors using a solution process. Scientific Reports, 7(1).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE