| 研究生: |
陳宥仁 Chen, Yu-Jen |
|---|---|
| 論文名稱: |
全自主電動載具導航與控制之感測器融合系統之開發 Development of Sensor Fusion System for Navigation and Control of an Autonomous Electric Vehicle |
| 指導教授: |
李祖聖
Li, Tzuu-Hseng S. |
| 共同指導教授: |
陳建富
Chen, Jiann-Fuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 感測器融合 、卡曼濾波器 、模糊控制 |
| 外文關鍵詞: | Sensor fusion, Kalman filter, fuzzy control |
| 相關次數: | 點閱:91 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一用於全自主式電動車導航控制系統之感測器融合系統。本系統融合雷射測距儀、磁力計、以及慣量感測器的資料,並可使載具在目標軌跡上移動。藉由模糊邏輯方法改善卡曼濾波器的效能,我們可以利用慣量感測器量測載具的狀態,並以模糊式控制器控制本載具的行為。而為了增進載具行進間的安全,我們利用雷射測距儀來偵測並迴避環境障礙。
雖然卡曼濾波器常用於感測器融合之應用,但卡曼濾波器需要全球定位系統及慣量感測器的動態模型、隨機誤差模型、以及感測器系統前一刻的資料。因此,卡曼濾波器所估測出的數值深受隨機模型、感測器失效、以及系統線性化模型誤差之影響。本論文利用一模糊式感測器融合系統增進卡曼濾波器的效能。藉由感測器融合技術所得的資訊,本載具可清楚分辨指定路徑及環境中的障礙,再結合自動控制系統,本載具即可完成自動導航的任務。
This thesis presents the design and implementation of a sensor fusion system for navigation and control of an autonomous electric vehicle. The system integrates signals of laser range finders, magnetometers and inertial measurement units (IMUs). The system keeps the vehicle moving on the desired trajectory. Using Kalman filter with fuzzy-logic module, we are able to get the state of the vehicle and decide the behavior of the vehicle by a fuzzy controller. To enhance the safety of the vehicle, we utilize laser range finder to perform collision prevention. Kalman filter is used commonly to perform data fusion and is considered as the benchmark for sensor data integration. This method requires a dynamic model of global position system (GPS) and IMU errors, a stochastic model of IMU errors, and a priori data of sensor systems. The accuracy of Kalman filter is influenced by stochastic modeling, outage of some sensors, and the divergence that results from approximations during any linearization process and system mismodeling. To improve the performance of Kalman filter, a fuzzy-logic based sensor fusion system is proposed. With the fused sensor information, the vehicle can recognize the desired trajectory and the obstacles in the environment. Combining the sensors’ measurement and the control strategy, a navigation and control system of an autonomous electric vehicle is accomplished in this thesis.
[1] L. S. Davis and T. R. Kushner, “Road boundary detection for autonomous vehicle navigation,” Intell. Robotic Comput. Vision, SPIE, vol. 579, pp. 362-366, 1985.
[2] U. K. Sharma, “Road following by an autonomous vehicle using range data,” Mobile Robots, SPIE, vol. 727, pp. 169-179, 1986.
[3] E. Dickmanns and A. Zapp, “A curvature-based scheme for improving road vehicle guidance by computer vision,” Mobile Robots, SPIE, vol. 727, pp. 161-168, 1986.
[4] A. M. Waxman, J. J. LeMoigne, L. S. Davis, B. Srinivasan, T. R. Kushner, E. Liang, and T. Siddalingaiah, “A visual navigation system for autonomous land vehicle,” IEEE J. Rob. Automat., vol. RA-3, pp. 124-141, 1987.
[5] D. Kuan, G. Phipps, and A. Hsueh, “Autonomous robotic vehicle road following,” IEEE Trans. Patt. Anal. Machine Intell., vol. 10, pp. 648-658, 1988.
[6] C. Thorpe, M. H. Hebert, T. Kanade, and S. A. Shafer, “Vision and navigation for the Camegie-Mellon Navlab,” IEEE Trans. Patt. Anal. Machine Intell., vol. 10, pp. 362-373, 1988.
[7] M. A. Turk, D. G. Morgenthaler, K. D. Gremban, and Martin Marra, “VITS-A vision system for autonomous land vehicle navigation,” IEEE Trans. Pattern Anal. Machine Intell., vol. 10, pp. SPIE, vol. 579, pp. 362-366, 1985.
[8] S. K. Kenue, “Lanelok: Detection of lane boundaries and vehicle tracking using image processing techniques,” Mobile Robots, SPIE, vol. 1195, pp. 221-245, 1989.
[9] R. T. Dunlay and D. G. Morgenthaler, “Obstacle avoidance on roadways using range data,” Mobile Robots, SPIE, vol. 727, pp. 110-116, 1986.
[10] P. A. Veatch and L. S. Davis, ‘‘Efficient algorithms for obstacle detection using range data,” Comput. Vision, Graphics, and Image Processing, vol. 50, pp. 50-74, 1990.
[11] W. H. CoKIIier and R. E. Fenton, “On the steering of automated vehicles-A velocity-adaptive controller,” IEEE Trans. Veh. Technol., vol. VT-29, pp. 375-385, 1980.
[12] R. J. Mayhan and R. A. Bishel, “A two-frequency radar for vehicle automatic lateral control,” IEEE Trans. Veh. Techno., vol. VT-31, pp. 32-39, 1982.
[13] D. G. Gage and J. B. Pletta, “Ground vehicle convoying,” Mobile Robots II, SPIE, vol. 852, pp. 319-328, 1987.
[14] R. Stengel and A. Niehaus, “Intelligent guidance for headway and lane control,” in Am. Contr. Cony. Proc., Pittsburgh, PA, Jun. 1989.
[15] N. Kehtarnavaz, N. C. Griswold and J. S . Lee, “Visual control of an autonomous vehicle (BART)-the vehicle-following problem” IEEE Trans. Veh. Technol., vol. 40, no. 3, Aug. 1991
[16] R. L. Courtney, “A broad view of ITS standards in the US” in Proc. ITSC, 1997, pp. 529-536.
[17] J. Z. Sasiadek and Q. Wang, “Sensor fusion based on fuzzy kalman filtering for autonomous robot vehicle,” in Proc. IEEE Int. Conf. Robotics and Automation, 1999, pp. 2970-2975.
[18] User’s Manual, L293D Quadruple Half-H Derivers, Jun. 2002.
[19] User’s Manual, Hitachi H48C 3-Axis Accelerometer Module, 2007.
[20] C. C. Tsai, “A localization system of a mobile robot by fusing dead-reckoning and ultrasonic measurements,” in Proc. IEEE Int. Conf. IMTC, 1998, pp. 144-149.
[21] D. M. Bevly and B. Parkinson, “Cascaded kalman filters for accurate estimation of multiple biases, dead-reckoning navigation, and full state feedback control of ground vehicles,” IEEE Trans. Control Systems Technology, vol. 15, no. 2, pp. 199-208, Mar. 2007.
[22] J. Borenstein, “The CLAPPER: a dual-drive mobile robot with internal correction of dead-reckoning errors,” in Proc. IEEE Int. Conf. Robotics and Automation, 1994, pp. 3085-3090.
[23] L. Fang, P. J. Antsaklis, L. A. Montestruque, M. B. McMickell, M. Lemmon, Y. Sun, H. Fang, I. Koutroulis, M. Haenggi, M. Xie, and X. Xie, “Design of a wireless assisted pedestrian dead reckoning system – the NavMote experience,” IEEE Trans. Ind. Electron., vol 54, no. 6, pp. 2342-2358, Dec. 2005.
[24] M. Golfarelli, D. Maio, and S. Rizzi, “Correction of dead-reckoning errors in map building for mobile robots,” IEEE Trans. Robot. Autom., vol. 17, no. 1, pp. 37-47, Feb. 2001.
[25] D. H. Titterton, and J. L. Weston “Strapdown inertial navigation technology,” 2nd ed., AIAA.
[26] D. Simon, “Kalman filtering for fuzzy discrete time dynamic systems” Applied Soft Computing 3,pp 191-207, 2003.
[27] D. R. Losada, A. Jimenez, F. Matia, and B. M. Ai-Hadithi, “A novel fuzzy kalman filter for mobile robots localization” in Proc. IPMU, 2004.
[28] L. A. Zadeh, “Fussy Sets,” Informat. Contr., Vol. 8, pp. 338-353, 1965.
[29] L. A. Zadeh, “Fuzzy Algorithms,” Inform. Control, Vol. 12, pp. 94-102, 1968.
[30] Y. C Yeh and T. H. Li “Design of autonomous fuzzy controllers of car-like mobile robots for parking and tracking” NCKU, Dissertation for Doctor of Philosophy, 2009.
[31] D. Leitch and P. J. Probert, “New techniques for genetic development of a class of fuzzy controllers,” IEEE Trans. Syst., Man, Cybern. C, vol. 28, pp. 112-123, Feb. 1998.
[32] M. Sugeno, T. Murofushi, T. Mori, T. Tatematsu, and J. Tanaka, “Fuzzy algorithmic control of a model car by oral instructions,” Fuzzy Sets Syst., vol. 32, pp. 207-219, 1989.
[33] S. Yasunobu and Y. Murai, “Parking control based on predictive fuzzy control,” in Proc. IEEE Int. Conf. Fuzzy Systems, vol. 2, 1994, pp. 1338-1341.
[34] A. Tayebi and A. Rachid, “A time-varying-based robust control for the parking problem of a wheeled mobile robot,” in Proc. IEEE Int. Conf. Robotics and Automation, 1996, pp. 3099-3104.
[35] M. C. Leu and T. Q. Kim, “Cell mapping based fuzzy control of car parking,” in Proc. IEEE Int. Conf. Robotics Automation, 1998, pp. 2494-2499.
[36] H. An, T. Yoshino, D. Kashimoto, M. Okubo, Y. Sakai, and T. Hamamoto, “Improvement of convergence to goal for wheeled mobile robot using parking motion,” in Proc. IEEE Int. Conf. Intelligent Robots Systems, 1999, pp. 1693-1698.
[37] B. Shirazi and S. Yih, “Learning to control: a heterogeneous approach,” in Proc. IEEE Intl. Symp. Intelligent Control, 1989, pp. 320-325.
[38] M. Ohkita, H. Mitita, M. Miura, and H. Kuono, “Traveling experiment of an autonomous mobile robot for a flush parking,” in Proc. 2nd IEEE Conf. Fuzzy System, vol. 2, Francisco, CA, 1993, pp. 327-332.
[39] D. Lyon, “Parallel parking with curvature and nonholonomic constraints,” in Proc. Symp. Intelligent Vehicles, Detroit, MI, 1992, pp. 341-346.
[40] R. M. Murray and S. S. Sastry, “Nonholonomic motion planning: steering using sinusoids,” IEEE Trans. Automat. Contr., vol. 38, pp. 700-716, May 1993.
[41] I. E. Paromtchik and C. Laugire, “Motion generation and control for parking an autonomous vehicle,” in Proc. IEEE Conf. Robotics Automation, vol. 4, Minneapolis, MN, 1996, pp. 3117-3122.
[42] C. Laugier, T. Fraichard, I. E. Paromtchik, and P. Garnier, “Sensor-based control architecture for a car-like vehicle,” in Proc. IEEE Int. Conf. Intelligent Robots Systems, 1998, pp. 216–222.
[43] T. C. Lee, C. Y. Tsai, and K. T. Song, “Fast parking control of mobile robots: a motion planning approach with experimental validation,” IEEE Trans. Contr. Syst. Technol., vol. 12, pp. 661-676, Sep. 2004.
[44] K. Y. Lian, C. S. Chin, and T. S. Chiang, “Parallel parking a car-like robot using fuzzy gain scheduling,” in Proc. 1999 IEEE Int. Conf. Control Applications, vol. 2, 1999, pp. 1686-1691.
[45] K. Jiang and L. D. Seneviratne, “A sensor guided autonomous parking system for nonholonomic mobile robots,” in Proc. IEEE Int. Conf. Robotics Automation, vol. 1, 1999, pp. 311-316.
[46] K. Jiang, “A sensor guided parallel parking system for nonholonomic vehicles,” in Proc. IEEE Conf. Intelligent Transportation Systems, 2000, pp. 270-275.
[47] S. Lee, M. Kim, Y. Youm, and W. Chung, “Control of a car-like mobile robot for parking problem,” in Proc. IEEE Int. Conf. Robotics Automation, 1999, pp. 1-6.
[48] T.-H. S. Li and S.-J. Chang, “Autonomous fuzzy parking control of a car-like mobile robot,” IEEE Trans. Systems, Man, and Cybernetics, vol. 33, pp. 451–465, 2003.
[49] T. H-S. Li, S. J. Chang, and Y. X. Chen, “Implementation of human-like driving skills by autonomous fuzzy behavior control on an FPGA-based car-like mobile robot,” IEEE Trans. Industrial Electronics, vol. 50, no. 5, pp. 867-880, 2003.
[50] C. S. Ting, T. H-S. Li, and F. C. Kung, “An approach to systematic design of the fuzzy control system,” Fuzzy Sets Syst., vol. 77, pp. 151-166, 1996.
[51] T. H-S. Li and M. Y. Shieh, “Switching-type fuzzy sliding mode control of a cart-pole system,” Mechatronics, vol. 10, pp. 91-109, 2000.
[52] O. Kaynak, K. Erbatur, and M. Ertugrul, “The fusion of computationally intelligent methodologies and sliding-mode control—a survey,” IEEE Trans. Ind. Electron., vol. 48, pp. 4-17, Feb. 2001.
[53] J. S. Cho, H. W. Kim, and I. S. Kweon, “Image-based visual servoing using position and angle of image features,” Electron. Lett., vol. 37, pp. 208-214, 2001.
[54] http://www.altera.com
[55] User’s Manual, L293D Quadruple Half-H Derivers, Jun., 2002.
[56] 陳意翔,具智慧型停車功能車型機器人之設計與研製,國立成功大學電機 系碩士論文,2002。
[57] 張其正,以Nios 嵌入式系統設計實現雙感測器車型機器人之全自主式停車控制器,國立成功大學電機系碩士論文,2005。
[58] 石博宇,駕駛助理視覺系統之日間高速公路前車及鄰接車輛偵測,國立中正大學工學院電機工程研究所碩士論文,2003。
[59] 吳俊達,車型機器人之多功能智慧型停車控制器設計與實現,國立成功大學電機系碩士論文,2006。
[60] 林凱俊,智慧型自主式駕駛控制器之設計與實現,國立成功大學電機系碩士論文,2007。