簡易檢索 / 詳目顯示

研究生: 山福莫
Muhammad Syafiq
論文名稱: 以預校準之多魚眼鏡頭相機組影像進行箱型梁內部之三維重建
3D Reconstruction of the Inside of a Box Girder with a Pre-Calibrated Multi-Fisheye Camera-Rig Image
指導教授: 饒見有
Rau, Jiann-Yeou
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 85
中文關鍵詞: 箱型梁相機校準多魚眼相機裝置方位參數3D 模型
外文關鍵詞: box girder, camera calibration, multi-fisheye camera-rig, relative orientation parameters, 3D model
相關次數: 點閱:118下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    作為交通和道路系統的關鍵組成部分,橋梁在人類生活和國家經濟方面發揮著重要作用。其中在箱型橋梁的內部,因空間狹小、環境惡劣且完全黑暗,因此人員現場檢測時需要使用照明進入內部才能以人眼進行目視檢測,此過程有礙身體健康且繁瑣又耗時。
    為了將劣化檢測成果進行三維橋梁空間的定位,當前有關 3D模型的重建方式大都以地面雷射掃描儀 (Terrestrial Laser Scanning, TLS)和近景攝影測量為主。然而,TLS儀器較為昂貴且有些體積大不易攜帶。因此本研究建議使用由具有 360 視場角 (FoV)之多魚眼相機裝置,組成的低成本儀器來拍攝與製作箱型梁內部之 3D模型。
    本研究重點之一為相機之預校準(Pre-calibration),特別是相機之內方位參數(IOP)和相機間的相對方位參數(ROP)。本研究採用自率光束法平差(Self-calibration bundle adjustment, SCBA)技術來實現精確預校準。此技術使用Australis 編碼後之人造標,有助於確保預校準參數的準確性。
    本研究另一個重點是,在箱型梁長廊道的弱幾何影像網型下,如何使用多魚眼鏡頭重建出高精度的三維模型。本研究數據採集路徑呈直線,以提升取像之效率。實驗中以球形全景模式和原始未拼接的預校準影像,在地下室全黑長廊區域進行模擬,在LED燈輔助下進行拍照,同時計算與評估合適的重疊率,以便在進行箱型梁內部數據採集前,先行了解最佳的攝影方式。
    在實際箱型梁內部實驗中,本研究選擇了兩跨箱型梁測區,兩測區均位於橋梁的起點。第一個測區有比較多的塑膠管道佔據空間,影響了3D建模的完整性。實驗中還進行了直線軌跡和環型軌跡的數據採集程序,但在空三平差後,皆獲得了小於1公分的尺度檢核誤差。此外,在3D密集點雲精度分析中,進行了點雲與點雲距離的計算,結果在兩個測區分別得到3.56公分與1.4公分的平均誤差,以及2公分的均方根誤差,顯示本研究能夠生成具有高幾何精確度的密集點雲,而所建議的方法與低成本設備,可應用於高精度的室內測繪。
    本研究主要貢獻,在於即使沒有任何比例尺(長度)或控制點的約制,以準確且穩定的預校準參數針對長廊道區域重建 3D模型,有機會獲得高精確度的 3D 模型。而透過本研究所建議的低成本攝影儀器,配合近景攝影測量技術,有望作為取代現場人員目視檢測的替代解決方案,特別是在沒有任何照明的長廊道區域 。

    Abstract
    As a key component of transportation and road systems, bridges play an important role in human well-being and improve the economy of a country. However, the inside parts of the bridges, i.e., the box girder, which is in a narrow space and totally dark, are rarely inspected, sometimes through manual inspection by illuminating the inside part of the infrastructure, which is tedious and time-consuming. Since this technology offers an accurate solution, the current literature on 3D reconstruction is dominated by terrestrial laser scanners (TLS) and full-frame cameras. However, this instrument is not a portable option and demands substantial investments in terms of equipment purchases. In practical experience, a low-cost instrument composed of a multi-fisheye camera rig with 360-degree field of View (FoV) coverage is suggested to produce a 3D reconstruction of the box girder.
    This study focuses on camera calibration, specifically the calibration of Interior Orientation Parameters (IOPs) and Relative Orientation Parameters (ROPs). A suitable technique called Self-Calibration Bundle Adjustment (SCBA) is employed to achieve accurate calibration. This technique is assisted by Australis-coded targets, which help ensure stable pre-calibration parameters. By implementing this approach, the study aims to obtain reliable and precise camera calibration for subsequent 3D reconstruction tasks. The video sequence mode is utilized, and the data acquisition path is in a straight line with forward and backward directions for faster and more efficient purposes. This experiment performs the simulation in a long corridor area with spherical panoramic mode and from original unstitched pre-calibrated images. The second simulation is conducted by masking and configuring the overlap ratio assisted by an LED light in a location without any illumination to represent the condition of the environment and get the best configuration before performing data acquisition inside a box girder.
    In a box girder, this study uses two samples of the box girder, both of which are located at the starting point of the bridge. The first road is more covered by pipelines than the second road. This experiment also conducted two data acquisition procedures: straight line and surrounding track data acquisition. Regarding this experiment, it obtained a CkSB error of less than 1 cm. Furthermore, for 3D accuracy evaluation, C2C was conducted, and this study was able to generate point clouds with high geometric quality as the references and the point density are quite similar to the ground truth, and it yielded a mean error of 3.56 cm in the first road and 1.4 cm in the second road, with the RMS error less than 2 cm RMS compared to TLS. Regarding the result, this approach may suggest sufficient and acceptable indoor mapping with low-cost equipment. The main contribution of this research emphasizes that accurate and stable pre-calibration is important to obtain highly accurate 3D reconstruction results and offers accurate scale factors, even though without any scale bars or control points, to generate 3D reconstruction in a straight-line long corridor area by obtaining a mean error and RMS error around 1 cm in the C2C comparison. Furthermore, the proposed instrument may be interesting to replace in-site inspection methods, and a close-range photogrammetry method that offers accuracy while reducing cost is promising as an alternative solution to replace in-site inspection, especially in an indoor area without any lighting.

    Table of Contents 摘要 ………………………………………………………………………………………...i Abstract iii Acknowledgements v List of Tables xi intentionally left blank xii List of Figures xiii Chapter 1 Introduction 1 1.1. Background 2 1.1.1. Box Girder in the Bridge 2 1.1.2. The growth of 360° action camera 4 1.2. Objectives 7 1.3. Thesis structure 7 Chapter 2 Literature Review 9 2.1 Fisheye camera 9 2.2 Fisheye projection 10 2.3 Fisheye camera applications 11 2.4 Camera calibration parameters 13 2.4.1 IOPs (Interior Orientation Parameters) 13 2.4.2 Relative Orientation Parameters (ROPs) 14 2.5 Self-calibration bundle adjustment 16 2.6 Structure from motion 16 2.7 Co-registration for comparison purposes 17 2.8 Cloud-to-cloud distance comparison 18 Chapter 3 Research Location and Equipment 21 3.1. Study Area 21 3.2. Equipment for data acquisition 24 3.3. Scale bars 26 3.4. The TLS as a ground truth 28 Chapter 4 Methodology 30 4.1. Research Simulation Workflow 31 4.2. ROPs for stability test purposes 31 4.3. Camera IOPs stability test 32 4.4. Camera calibration strategy 33 4.5. Data acquisition for simulation 36 4.5.1 Simulation in an Indoor long corridor 37 4.5.2 Simulation in a location where is totally dark 38 4.6. Data acquisition in the box girder 39 4.6.1 Pilot One inside of box girder 40 4.6.2 TLS Data Acquisition 43 4.7. Data processing 43 Chapter 5 Results & Discussions 46 5.1. Camera stability test results 47 5.2. Pre-calibration result 48 5.3. Simulation results in 50 5.3.1 Simulation in an Indoor long corridor 51 5.3.2 Simulation in a dark location 54 5.4. 3D Reconstruction result inside of a box girder 60 5.5. TLS results in the box girder 68 5.6. C2C Comparison 68 Chapter 6 Conclusions and Future Works 73 6.1. Conclusions 74 6.2. Suggestions & Future Works 75 References ………………………………………………………………………………77

    References
    Abate, D., Toschi, I., Sturdy-Colls, C., &Remondino, F. (2017). A low-cost panoramic camera for the 3d documentation of contaminated crime scenes. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2W8), 1–8. https://doi.org/10.5194/isprs-archives-XLII-2-W8-1-2017
    Ahmad Fuad, N., Yusoff, A. R., Ismail, Z., &Majid, Z. (2018). Comparing the performance of point cloud registration methods for landslide monitoring using mobile laser scanning data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(4/W9), 11–21. https://doi.org/10.5194/isprs-archives-XLII-4-W9-11-2018
    AlKhalil, O. (2020). Structure from motion (SfM) photogrammetry as alternative to laser scanning for 3D modelling of historical monuments. Open Science Journal, 5(2). https://doi.org/10.23954/osj.v5i2.2327
    Andaru, R., Rau, J. Y., Chuang, L. Z. H., &Jen, C. H. (2022). Multitemporal UAV Photogrammetry For Sandbank Morphological Change Analysis: Evaluations of Camera Calibration Methods, Co-Registration Strategies, and the Reconstructed DSMs. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 5924–5942. https://doi.org/10.1109/JSTARS.2022.3192264
    Balletti, C., Guerra, F., Tsioukas, V., &Vernier, P. (2014). Calibration of action cameras for photogrammetric purposes. Sensors (Switzerland), 14(9), 17471–17490. https://doi.org/10.3390/s140917471
    Barazzetti, L., Previtali, M., &Roncoroni, F. (2017). 3D modelling with the Samsung Gear 360. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2W3), 85–90. https://doi.org/10.5194/isprs-archives-XLII-2-W3-85-2017
    Barazzetti, L., Previtali, M., &Roncoroni, F. (2018). Can we use low-cost 360-degree cameras to create accurate 3D models? International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2), 69–75. https://doi.org/10.5194/isprs-archives-XLII-2-69-2018
    Barazzetti, L., Previtali, M., &Scaioni, M. (2020). Procedures for condition mapping using 360° images. ISPRS International Journal of Geo-Information, 9(1). https://doi.org/10.3390/ijgi9010034
    Beekmans, C., Schneider, J., Läbe, T., Lennefer, M., Stachniss, C., &Simmer, C. (2016). Cloud photogrammetry with dense stereo for fisheye cameras. Atmospheric Chemistry and Physics, 16(22), 14231–14248. https://doi.org/10.5194/acp-16-14231-2016
    Bianco, S., Ciocca, G., &Marelli, D. (2018). Evaluating the performance of structure from motion pipelines. Journal of Imaging, 4(8), 1–18. https://doi.org/10.3390/jimaging4080098
    Comes, R., Neamțu, C. G. D., Grec, C., Buna, Z. L., Găzdac, C., &Mateescu-Suciu, L. (2022). Digital Reconstruction of Fragmented Cultural Heritage Assets: The Case Study of the Dacian Embossed Disk from Piatra Roșie. Applied Sciences (Switzerland), 12(16). https://doi.org/10.3390/app12168131
    Dawson, S. M., Bowman, M. H., Leunissen, E., &Sirguey, P. (2017). Inexpensive aerial photogrammetry for studies of whales and large marine animals. Frontiers in Marine Science, 4(NOV), 1–7. https://doi.org/10.3389/fmars.2017.00366
    Detchev, I., Mazaheri, M., Rondeel, S., &Habib, A. (2014). Calibration of multi-camera photogrammetric systems. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 40(1), 101–108. https://doi.org/10.5194/isprsarchives-XL-1-101-2014
    Di, K., Liu, Y., Liu, B., Peng, M., &Hu, W. (2014). A self-calibration bundle adjustment method for photogrammetric processing of Chang ′e-2 stereo lunar imagery. IEEE Transactions on Geoscience and Remote Sensing, 52(9), 5432–5442. https://doi.org/10.1109/TGRS.2013.2288932
    Eichenseer, A., Bätz, M., &Kaup, A. (2019). Motion Estimation for Fisheye Video With an Application to Temporal Resolution Enhancement. IEEE Transactions on Circuits and Systems for Video Technology, 29(8), 2376–2390. https://doi.org/10.1109/TCSVT.2018.2869546
    Ellenberg, A., Branco, L., Krick, A., Bartoli, I., &Kontsos, A. (2015). Use of Unmanned Aerial Vehicle for Quantitative Infrastructure Evaluation. Journal of Infrastructure Systems, 21(3), 1–8. https://doi.org/10.1061/(asce)is.1943-555x.0000246
    Esquivel, S., Woelk, F., &Koch, R. (2007). Calibration of a multi-camera rig from non-overlapping views. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4713 LNCS, 82–91. https://doi.org/10.1007/978-3-540-74936-3_9
    Fiorillo, F., Limongiello, M., &Fernández-Palacios, B. J. (2016). Testing GoPro for 3D model reconstruction in narrow spaces. Acta IMEKO, 5(2), 64–70. https://doi.org/10.21014/acta_imeko.v5i2.372
    Fraser, C. S. (1997). Digital camera self-calibration. ISPRS Journal of Photogrammetry and Remote Sensing, 52(4), 149–159. https://doi.org/10.1016/S0924-2716(97)00005-1
    Fraser, C. S. (2013). Automatic camera calibration in close range photogrammetry. Photogrammetric Engineering and Remote Sensing, 79(4), 381–388. https://doi.org/10.14358/PERS.79.4.381
    Fraser, C. S., &Al-Ajlounl, S. (2006). Zoom-dependent camera calibration in digital close-range photogrammetry. Photogrammetric Engineering and Remote Sensing, 72(9), 1017–1026. https://doi.org/10.14358/PERS.72.9.1017
    Fraser, C. S., &Edmundson, K. L. (2000). Design and implementation of a computational processing system for off-line digital close-range photogrammetry. ISPRS Journal of Photogrammetry and Remote Sensing, 55(2), 94–104. https://doi.org/10.1016/S0924-2716(00)00010-1
    Furukawa, Y., &Ponce, J. (2009). Accurate camera calibration from multi-view stereo and bundle adjustment. International Journal of Computer Vision, 84(3), 257–268. https://doi.org/10.1007/s11263-009-0232-2
    Gillins, M. N., Gillins, D. T., &Parrish, C. (2016). Cost-Effective Bridge Safety Inspections Using Unmanned Aircraft Systems (UAS). Geotechnical and Structural Engineering Congress 2016 - Proceedings of the Joint Geotechnical and Structural Engineering Congress 2016, October 2017, 1931–1940. https://doi.org/10.1061/9780784479742.165
    Gkoumas, K., Marques Dos Santos, F. L., VanBalen, M., Tsakalidis, A., Ortega Hortelano, A., Grosso, M., Haq, G., &Pekár, F. (2019). Research and innovation in bridge maintenance, inspection and monitoring - A European perspective based on the Transport Research and Innovation Monitoring and Information System (TRIMIS). https://doi.org/10.2760/719505
    Goesele, M., Snavely, N., Curless, B., Hoppe, H., &Seitz, S. M. (2007). Multi-view stereo for community photo collections. Proceedings of the IEEE International Conference on Computer Vision. https://doi.org/10.1109/ICCV.2007.4408933
    Habib, A. F., Shin, S. W., &Morgan, M. F. (2002). A new approach for calibrating off-the-shelf digital cameras. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 34.
    Habib, A., Pulliivelli, A., Mitishita, E., Ghanma, M., &Kim, E. M. (2006). Stability analysis of low-cost digital cameras for aerial mapping using different georeferencing techniques. Photogrammetric Record, 21(113), 29–43. https://doi.org/10.1111/j.1477-9730.2006.00352.x
    Habib, F. (2002). Self-Calibration Using Straight Lines. Most, 17(October), 635–650.
    Hallermann, N., &Morgenthal, G. (2013). Unmanned aerial vehicles (UAV) for the assessment of existing structures. Long Span Bridges and Roofs - Development, Design and Implementation, September. https://doi.org/10.2749/222137813808627172
    Hallermann, N., Morgenthal, G., &Rodehorst, V. (2014). Vision-based deformation monitoring of large-scale structures using unmanned aerial systems. Engineering for Progress, Nature and People, December, 2852–2859. https://doi.org/10.2749/222137814814070343
    Hasler, O., Loesch, B., Blaser, S., &Nebiker, S. (2019). Configuration and simulation tool for 360-degree stereo camera rig. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2/W13), 793–798. https://doi.org/10.5194/isprs-archives-XLII-2-W13-793-2019
    Humpe, A. (2020). Bridge inspection with an off-the-shelf 360° camera drone. Drones, 4(4), 1–23. https://doi.org/10.3390/drones4040067
    Jhan, J. P., Li, Y. T., &Rau, J. Y. (2015). A modified projective transformation scheme for mosaicking multi-camera imaging system equipped on a large payload fixed-wing UAS. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 40(3W2), 87–93. https://doi.org/10.5194/isprsarchives-XL-3-W2-87-2015
    Jhan, J. P., Rau, J. Y., &Haala, N. (2018). Robust and adaptive band-to-band image transform of UAS miniature multi-lens multispectral camera. ISPRS Journal of Photogrammetry and Remote Sensing, 137(March), 47–60. https://doi.org/10.1016/j.isprsjprs.2017.12.009
    Jiang, S., Jiang, W., Huang, W., &Yang, L. (2017). UAV-based oblique photogrammetry for outdoor data acquisition and offsite visual inspection of transmission line. Remote Sensing, 9(3). https://doi.org/10.3390/rs9030278
    Joseph, S., &Bhivgade, M. P. R. (2000). Analysis and Design of Post Tensioned Box Girder Bridge Using SAP. Int Ernat Ional Journal of Scient Ific Research in Science, Engineering and Technology IJSRSET JourNal of T He INdIaN Roads CoNgress, 74(2), 806–813. http://www.engineeringcivil.com/analysis-and-design-of-prestressed-concrete-box-girder-bridge.html
    Kim, H., Jung, J., &Paik, J. (2016). Fisheye lens camera based surveillance system for a wide field of view monitoring. Optik, 127(14), 5636–5646. https://doi.org/10.1016/j.ijleo.2016.03.069
    Lari, Z., Habib, A., Mazaheri, M., &Al-Durgham, K. (2014). Multi-camera system calibration with built-in relative orientation constraints (Part 2) automation, implementation, and experimental results. Journal of the Korean Society of Surveying Geodesy Photogrammetry and Cartography, 32(3), 205–216. https://doi.org/10.7848/ksgpc.2014.32.3.205
    Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
    Maros, H., &Juniar, S. (2016). 済無No Title No Title No Title. 55(2), 1–23.
    Masiero, A., &Vettore, A. (2016). Improved feature matching for mobile devices with IMU. Sensors (Switzerland), 16(8). https://doi.org/10.3390/s16081243
    Meng, L., Hirayama, T., &Oyanagi, S. (2018). Underwater-Drone with Panoramic Camera for Automatic Fish Recognition Based on Deep Learning. IEEE Access, 6, 17880–17886. https://doi.org/10.1109/ACCESS.2018.2820326
    Murtiyoso, A., Hristova, H., Rehush, N., &Griess, V. C. (2022). Low-Cost Mapping of Using Spherical Photogrammetry. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 48(2/W1-2022), 185–190. https://doi.org/10.5194/isprs-archives-XLVIII-2-W1-2022-185-2022
    Pepe, M., &Costantino, D. (2020). Techniques, tools, platforms and algorithms in close range photogrammetry in building 3D model and 2D representation of objects and complex architectures. Computer-Aided Design and Applications, 18(1), 42–65. https://doi.org/10.14733/cadaps.2021.42-65
    Perez, A. J., Perez-Soler, J., Perez-Cortes, J. C., &Guardiola, J. L. (2022). Improving Multi-View Camera Calibration Using Precise Location of Sphere Center Projection. Computers, 11(6), 1–11. https://doi.org/10.3390/computers11060084
    Perfetti, L., Polari, C., &Fassi, F. (2018). Fisheye multi-camera system calibration for surveying narrow and complex architectures. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2), 877–883. https://doi.org/10.5194/isprs-archives-XLII-2-877-2018
    Schneider, D., Schwalbe, E., &Maas, H. G. (2009). Validation of geometric models for fisheye lenses. ISPRS Journal of Photogrammetry and Remote Sensing, 64(3), 259–266. https://doi.org/10.1016/j.isprsjprs.2009.01.001
    Shen, Y., Lindenbergh, R., &Wang, J. (2017). Change analysis in structural laser scanning point clouds: The baseline method. Sensors (Switzerland), 17(1), 1–25. https://doi.org/10.3390/s17010026
    Shortis, M. R., Ogleby, C. L., Robson, S., Karalis, E. M., &Beyer, H. A. (2000). <title>Calibration modeling and stability testing for the Kodak DC200 series digital still camera</title>. Videometrics and Optical Methods for 3D Shape Measurement, 4309(March 2015), 148–153. https://doi.org/10.1117/12.410870
    Syafiq, M., Rau, I. Y., &Jhan, J. P. (2022). 3D Indoor Corridor Mapping With Calibrated Rops of a Multi-Fisheye Camera-Rig. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 48(2/W1-2022), 237–242. https://doi.org/10.5194/isprs-archives-XLVIII-2-W1-2022-237-2022
    Wang, D., Zhang, Y., Pan, Y., Peng, B., Liu, H., &Ma, R. (2020). An automated inspection method for the steel box girder bottom of long-span bridges based on deep learning. IEEE Access, 8, 94010–94023. https://doi.org/10.1109/ACCESS.2020.2994275
    Wierzbicki, D. (2018). Multi-camera imaging system for UAV photogrammetry. Sensors (Switzerland), 18(8). https://doi.org/10.3390/s18082433
    Woodward, R. J., D.W., C., Daly, A. F., Vassie, P. R., Haardt, P., Kashner, R., Astudillo, R., Velando, C., Godart, B., Cremona, C., Mahut, B., Raharinaivo, A., Lau, Markey, I., Bevc, L., &Peruš, I. (2001). BRIME - Bridge Management in Europe. Final Report, January 1998, 227.
    Yogender, Raghavendra, S., &Kushwaha, S. K. P. (2020). Role of Ground Control Points (GCPs) in Integration of Terrestrial Laser Scanner (TLS) and Close-range Photogrammetry (CRP). Lecture Notes in Civil Engineering, 33(July 2019), 531–537. https://doi.org/10.1007/978-981-13-7067-0_42
    Zhang, X., Zhao, P., Hu, Q., Wang, H., Ai, M., &Li, J. (2019). A 3D reconstruction pipeline of urban drainage pipes based on multiviewimage matching using low-cost panoramic video cameras. Water (Switzerland), 11(10). https://doi.org/10.3390/w11102101
    Zhou, Y., Daakir, M., Rupnik, E., &Pierrot-Deseilligny, M. (2020). A two-step approach for the correction of rolling shutter distortion in UAV photogrammetry. ISPRS Journal of Photogrammetry and Remote Sensing, 160(October 2019), 51–66. https://doi.org/10.1016/j.isprsjprs.2019.11.020
    Zulfiqar, A. (2014). Design of a Bridge Inspection System ( BIS ) to Reduce Time and Cost.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE