簡易檢索 / 詳目顯示

研究生: 林程翰
Lin, Cheng-han
論文名稱: 懸板配置對高桶式旋流排砂器排砂效率影響之試驗研究
Experimental study on the effect of suspended deflectors on sediment removal efficiency of a deep-type vortex chamber
指導教授: 詹錢登
Jan, Chyan-Deng
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 96
中文關鍵詞: 高桶式旋流排砂器排砂濃度效率懸板
外文關鍵詞: Suspended deflector, Sediment concentration removal efficiency, Deep-type vortex chamber
相關次數: 點閱:87下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 水力旋流漏斗排砂器的基本原理是將渾水引入漏斗槽內做旋流運動,利用重力及離心力的雙重作用,使水砂分離。高桶式旋流排砂器的漏斗槽具有較高的桶身,使引入的渾水在漏斗槽中有較長的停留時間,以利於排除較細的泥砂。本研究在排砂漏斗槽內安裝環狀懸板,以實驗方式探討懸板配置位置及數量對排砂漏斗排砂效率之影響。研究試驗在直徑 為48公分及高度 為115公分的旋流排砂器進行實驗,實驗水深 為95.7公分。懸板的寬度 為12公分,在高度方面的配置分為底部、中間以及頂部三種,數量配置由一片到三片,其中兩片180度半環狀懸板設置於中間與頂部,250度角懸板則設置於底部。
    本研究之清、渾水觀測試驗以及渾水排砂試驗,在固定入流量 為 以及漏斗底孔直徑 為6 的條件下進行,並分別針對不同的懸板配置位置與數量來探討其對流場特性與排砂效率之影響。研究試驗分成清水與渾水試驗兩大部分。於清水試驗中再分為排砂底孔流量的量測、無懸板時清水渦流的特性及懸板對清水渦流特性的影響。在渾水試驗中則分為清渾水交界面特性觀測、無懸板時渾水渦流之特性、懸板對清渾水交界面及渦流特性的影響、懸板對底孔排砂效率之影響。從清水觀測試驗中,在無懸板的條件下,當水體開始溢流後十分鐘,空氣柱長度約48公分,而於設置三懸板的條件下,空氣柱長度僅有2至3公分,此說明設置懸板後明顯減少空氣柱之長度。另外,在有設置上懸板的條件下,表面水流環狀流動主要侷限在自渦流中心起算0.5R至0.6R處(R為漏斗槽半徑)。渾水觀測試驗中,其表面流速較清水條件下慢,而在渦流的變化方面,水體開始溢流後,渾水渦流會消失,清水則否,此現象的原因可能為渾水的黏滯性大於清水所致。排砂試驗方面,於無懸板及設置上、中、下單一懸板條件下,其平均排砂濃度效率 分別為96.07 %、97.70 %、95.95 %以及96.55 %,此說明懸板設置位置對排砂濃度效率的影響,上優於下且下優於中。於雙懸板與三懸板條件下,其平均排砂濃度效率則皆有98 %以上。

    According to the basic theorem of hydraulic, muddy water flows into the vortex chamber through tangential inlet, and then muddy water moves as a vortex flow inside the chamber. So water and sediment will be separated due to the gravity and centrifugal force. Deep-type vortex chamber has a higher body of hopper, so muddy water has a longer residence time in the chamber in order to exclude the fine sediment. The ring-type suspended deflectors are set inside the vortex chamber, and the sediment removal efficiency of vortex chamber in experimental methods is discussed by different setting and numbers of suspended deflector. Experimental study is proceeding in the vortex chamber having diameter of 48 cm, height of 115 cm, and experiment water depth of 95.7 cm. There are three suspended deflectors, and the width of them is 12 cm. Each deflector could be installed at the relative position of top, middle, or bottom, numbers of setting is from 1 to 3 flats. The top and middle deflectors are 180 degrees half-ring-type suspended deflectors, and the bottom one is 250 degrees deflector.
    In the condition of inflow discharge = and the bottom flushing orifice =6 , with different sets and numbers of suspended deflectors, how deflectors influence on the flow characteristic in the chamber and sediment removal efficiency is discussed, the clear and muddy water observation test and sediment removal efficiency test are also presented in this study. There are two major parts in this research, one is for clear water, and the other one is for muddy water. For clear water experiment, we measure underflow discharge and observe vortex flow characteristic with and without suspended deflectors. For the muddy water experiment, the observation of the interface between clear and muddy water due to the deflector was conducted. The interaction between vortex flow and deflectors was observed, and its effect on sediment removal efficiency is also discussed.
    In the observation of clear water, under the condition without installing deflector and after the water overflowing 10 minutes, the air core was 48 cm length, while under the condition with three deflectors, the air core left only 2~3 cm. It is demonstrated that installed deflectors could reduce the length of air core significantly. Besides, under the condition with top deflector, the water surface moving as a vortex flow was restricted at the region from the center of chamber outward to 0.5R~0.6R (R is the radius of chamber). From the observation of muddy water, it is found that the surface velocity is more slowly compared with the condition of clear water. When muddy water started overflowing for a while, the muddy water vortex would disappear but it does not for clear water. This phenomenon might be due to the viscosity of muddy water greater than clear water. In the experiment of sediment removal, when the condition without deflector and with one deflector at the top, middle, or bottom, the average sediment concentration removal efficiency, , are 96.07%, 97.70%, 95.95%, and 96.55%, respectively. It is demonstrated that the effect degree of position of deflector on sediment concentration removal efficiency is as follows, the top one is better than bottom one and the bottom one is better than middle one. For the condition with two and three deflectors, their average sediment concentration removal efficiency is more than 98%.

    中 文 摘 要.............................I Abstract................................II 誌 謝...................................IV 目 錄...................................V 表目錄..................................VII 圖目錄..................................VIII 符號說明................................XI 第一章 緒論.............................1 1.1研究動機.............................1 1.2研究目的.............................2 1.3本文架構.............................3 第二章 文獻回顧.........................4 2.1水力旋流漏斗排砂原理.................5 2.2試驗模型.............................7 第三章 試驗設備及試驗方法...............11 3.1高桶式旋流排砂器配置.................11 3.2試驗前置作業.........................15 3.2.1試驗泥砂特性.......................15 3.2.2定量瓶與清水重率定.................18 3.3渾水含砂濃度表示方式與量測方法.......20 3.3.1渾水含砂濃度表示方式...............20 3.3.2渾水含砂濃度量測方法...............22 3.4懸板配置及試驗條件...................23 3.5試驗方法.............................25 第四章 試驗結果分析.....................28 4.1清水試驗.............................28 4.1.1排砂底孔出流量與流量係數之建立.....28 4.1.2無懸板條件之清水渦流特性...........31 4.1.3懸板對清水渦流之影響...............32 4.2渾水試驗.............................35 4.2.1清渾水交界面觀測...................35 4.2.2無懸板條件之渾水渦流特性...........36 4.2.3懸板對渦流及清渾水交界面之影響.....37 4.2.4懸板對排砂效率之影響...............40 4.2.5其他條件改變對排砂效率之影響.......44 4.2.5.1入流量對排砂效率之影響...........44 4.2.5.2排砂底孔直徑對排砂效率之影響.....46 4.2.5.3渾水含砂濃度對排砂效率之影響.....47 第五章 結論與建議.......................90 5.1結論.................................90 5.2建議.................................91 參考文獻................................92 附錄A、相關參考資料.....................94 自 述...................................96

    1.Athar M., Kothyari U. C., and Garde R. J. (2002) , ”Sediment Removal Efficiency of Vortex Chamber Type Sediment Extractor.” Journal of hydraulic engineering, Vol.128, No.12, 1051-1059.
    2.Athar M., Kothyari U. C., and Garde R. J. (2003) , ” Distribution of sediment concentration in the vortex chamber type sediment extractor.” Journal of Hydraulic Research Vol. 41, No. 4, pp. 427–438.
    3.Bruce R. Munson, Donald F. Young, Theodore H. Okiishi (2001) , “Fundamentals of Fluid Mechanics, 4th edition.” U.S.A.: John Wiley & Sons, Inc.
    4.Keshavarzi A. R. and Gheisi A. R. (2006) , “Trap efficiency of vortex settling chamber for exclusion of fine suspended sediment particles in irrigation canals.” Irrig. and Drain. 55 : 419–434.
    5.Paul T. C., Sayal S. K., Sakhuja V. S., and Dhillon G. S. (1991) , “Vortex-settling basin design considerations.” Journal of Hydraulic Engineering, Vol. 117, No. 2, pp.172-189.
    6.Rea Q. (1984) , “Secondary currents within the circulation chamber sediment extractor.” Msc thesis, University of Southampton, Southampton, England.
    7.肖俊、邱秀云、周著、侯杰、龔守遠 (2006),「應用PIV技術測試渾水水力分離清水裝置的清水流場流動特性」,水力水運工程學報,第1期,pp.54-58,中國大陸。
    8.李琳、邱秀云、龔守遠、趙濤、牧振偉 (2008),「渾水水力分離清水裝置內水沙兩相弱旋流場數值模擬」,中國農村水力水電,第1期,中國大陸
    9.余新豔、邱秀云、朱超、許史、翟新峰 (2008),「動水中渾液面升降規律試驗研究」,中國農村水力水電,第2期,中國大陸。
    10.余新豔、邱秀云、劉芬、牧振偉、李琳 (2008),「渾水水力分離清水裝置溢流性能的影響因素試驗研究」,新疆農業大學學報,第2期,中國大陸。
    11.邱秀云、侯杰、周著 (1999),「排沙漏斗的流場特性及輸沙機理」,中國農村水力水電,第4期,中國大陸。
    12.邱秀云、肖俊、周著、侯杰 (2006),「渾水水力分離清水裝置清水流場特性試驗研究」,新疆農業大學學報,第4期,中國大陸。
    13.徐燕、邱秀云、李琳 (2006),「渾水分離清水裝置無懸板時的流場數值模擬」,新疆農業大學學報,第1期,pp. 58-62,中國大陸。
    14.唐偉熊 (2002),「靜水中阿公店水庫淤泥沉降特性之試驗研究」,國立成功大學水利及海洋工程學系碩士論文,指導教授:黃進坤。
    15.陳偉東、徐燕、邱秀云、劉芬 (2007),「渾水水力分離清水裝置的流場數值模擬」,水力發電,第5期,中國大陸。
    16.黃聰憲 (2007),「漏斗式排砂器水流特性及排砂效率之試驗研究」,國立成功大學水利及海洋工程學系碩士論文,指導教授:詹錢登。
    17.劉芬、邱秀云、陳偉東、李琳、趙濤 (2007),「渾水水力分離清水裝置的優化試驗研究」,新疆農業大學學報,第2期,中國大陸。
    18.譚冬初 (1999),「排沙漏斗的水力分析計算」,水動力學研究與進展,第2期,中國大陸。

    下載圖示 校內:2011-07-29公開
    校外:2011-07-29公開
    QR CODE