| 研究生: |
黃冠穎 Huang, Guan-Ying |
|---|---|
| 論文名稱: |
應用於二位元低密度同位元解碼器之洗牌隨機運算變數節點設計 Shuffle-based Stochastic Variable Node Design for Binary LDPC |
| 指導教授: |
謝明得
Shieh, Ming-Der |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 二位元低密度同為檢查碼 、隨機運算 、邊緣記憶體 、洗牌機制之邊緣記憶體 |
| 外文關鍵詞: | Low-density check parity code, stochastic computing, edge memory, shuffle-based edge memory |
| 相關次數: | 點閱:56 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨機計算應用於二位元低密度同位元檢查碼(Binary Low-Density Parity-Check, LDPC)的實現上以利於降低硬體實現的複雜度。
對比傳統二位元低密度同位元檢查碼解碼器計算單元的複雜電路,在隨機變數域當中皆可利用簡易邏輯匣電路實現。但是隨機變數計算中所需符合的資料間彼此獨立的特性,會因為同位元檢查矩陣的設計和遞迴疊代計算而被破壞。本論文提出的洗牌機制(Shuffle mechanism),是針對隨機變數域(Stochastic computing domain)二位元低密度同位元檢查碼當中的變數點運算單元做設計,此方法是將最早提出的邊緣記憶體(Early edge memory)作面積上的簡化,將隨機位址和隨機選取的電路以洗牌網絡的方式做設計,利用每個邊緣記憶體擁有低相關性洗牌順序的設計,使得此洗牌機制的變數點運算單元可以達到打散資料之間相關性的特性,與先前記憶體相比可以有效降低所需面積,以IEEE標準中的(576,288)的檢查矩陣實驗,此設計可達到與先前邊緣記憶體相近的解碼能力。
Stochastic decoders provide a low-complexity solution for the decoding of binary Low-Density Parity Check (LDPC) code. However, the assumptions of stochastic computation may be violated during iterative decoding, resulting in the latching problem and an error floor in the performance of the LDPC decoder.
This thesis proposes a new edge memory approach, designated as shuffle-based edge memory (SEM), for alleviating the latching problem. In the proposed method, the area consumption of the early edge memory (EEM) technique is reduced by replacing the random number generator and selector in EEM with a shuffle network designed to randomly assign each edge a low-correlated pattern. Experimental results obtained for the (576, 288) LDPC code, show that the BER performance of the proposed SEM decoder is comparable with that of the traditional EEM technique.
[1] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498–519, 2001.
[2] V. Savin, “Min-Max decoding for non binary LDPC codes,” IEEE Int. Symp. Inf. Theory - Proc., pp. 960–964, 2008.
[3] A. Anastasopoulos, "A comparison between the sum-product and the min-sum iterative detection algorithms based on density evolution," Global Telecommunications Conference, 2001. GLOBECOM '01. IEEE, San Antonio, TX, 2001, pp. 1021-1025 vol.2.
[4] S. Sharifi Tehrani, S. Mannor, and W. J. Gross, “Fully parallel stochastic LDPC decoders,” IEEE Trans. Signal Process., vol. 56, no. 11, pp. 5692–5703, 2008.
[5] B. Gaines. Advances in Information Systems Science, chapter 2, pages 37–172. Plenum, New York, 1969.
[6] A. Rapley, V. Gaudet, and C. Winstead, “On the simulation of stochastic iterative decoder architectures,” Can. Conf. Electr. Comput. Eng., vol. 2005, no. May, pp. 1868–1871, 2005.
[7] W. J. Gross, V. C. Gaudet, and A. Milner, “Stochastic Implementation of LDPC Decoders,” in Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005., 2005, pp. 713–717.
[8] V. C. Gaudet and A. C. Rapley, “Iterative decoding using stochastic computation,” Electron. Lett., vol. 39, no. 3, pp. 299–301, 2003.
[9] S. S. Tehrani, W. J. Gross, and S. Mannor, “Stochastic decoding of LDPC codes,” IEEE Commun. Lett., vol. 10, no. 10, pp. 716–718, 2006.
[10] C. Winstead, A. Rapley, V. C. Gaudet, and C. Schlegel, “Stochastic Iterative Decoders,” 2005.
[11] S. S. Tehrani, S. Mannor, and W. J. Gross, “Survey of stochastic computation on factor graphs,” Proc. Int. Symp. Mult. Log., 2007.
[12] R. G. Gallager, “Low-density parity-check codes,” IEEE Trans. Info. Theory, vol. 8, pp. 21–28, 1962.
[13] G. Yue, B. Lu, and X. Wang, “Analysis and design of finite-length LDPC codes,” IEEE Trans. Veh. Technol., vol. 56, no. 3, pp. 1321–1332, 2007.
[14] T. K. Moon, “Low-Density Parity-Check Codes,” in Error Correction Coding, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005, pp. 634–679.
[15] A. Alaghi and J. P. Hayes, “Survey of Stochastic Computing,” ACM Trans. Embed. Comput. Syst., vol. 12, no. 2s, pp. 1–19, 2013.
[16] F. Leduc-Primeau, V. C. Gaudet, and W. J. Gross, “Stochastic Decoders for LDPC Codes,” in Advanced Hardware Design for Error Correcting Codes, C. Chavet and P. Coussy, Eds. Cham: Springer International Publishing, 2015, pp. 105–128
[17] P. Jeavons and D. A. Cohen, “Generating Binary Sequences for Stochastic Computing,” vol. 40, no. 3, pp. 716–720, 1994.
[18] S. Min, E. Lee, and S. Chae, “A study on the stochastic computation using the ratio of one pulses and zero pulses,” Proc. IEEE Int. Symp. Circuits Syst. - ISCAS ’94, vol. 2, no. 3, pp. 471–474, 1994.
[19] S. L. Toral, J. M. Quero, and L. G. Franquelo, “Stochastic pluse coded arithmetic,” Int. Symp. Circuits Syst., vol. 1, p. I-599-I-602, 2000.
[20] S. S. Tehrani, S. Mannor, and W. J. Gross, “An area-efficient FPGA-based architecture for fully-parallel stochastic LDPC decoding,” in IEEE Workshop on Signal Processing Systems, SiPS: Design and Implementation, 2007, pp. 255–260.
[21] S. S. Tehrani, A. Naderi, G.-A. Kamendje, S. Mannor, and W. J. Gross, “Tracking Forecast Memories in stochastic decoders,” in 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, pp. 561–564.
[22] S. Sharifi Tehrani, C. Winstead, W. J. Gross, S. Mannor, S. L. Howard, and V. C. Gaudet, “Relaxation Dynamics in Stochastic Iterative Decoders,” IEEE Trans. Signal Process., vol. 58, no. 11, pp. 5955–5961, Nov.2010.
[23] S. Sharifi Tehrani, A. Naderi, G.-A. Kamendje, S. Hemati, S. Mannor, and W. J. Gross, “Majority-Based Tracking Forecast Memories for Stochastic LDPC Decoding,” IEEE Trans. Signal Process., vol. 58, no. 9, pp. 4883–4896, Sep.2010.
[24] A. Naderi, S. Mannor, M. Sawan, and W. J. Gross, “Delayed stochastic decoding of LDPC codes,” IEEE Trans. Signal Process., vol. 59, no. 11, pp. 5617–5626, 2011.
[25] T. Society, Draft IEEE Standard for Local and metropolitan area networks Part 16 : Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile, vol. 2005, no. October. 2005.