簡易檢索 / 詳目顯示

研究生: 施冠榮
Shih, Guan-Rong
論文名稱: 利用心電及活動訊號之特徵選取於自動睡眠階層判讀及睡眠效率估測之開發
Automatic Sleep Stage Classification and Sleep Efficiency Estimation Using Reduced Features of ECG and Activity Signals
指導教授: 王振興
Wang, Jeen-Shing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 87
中文關鍵詞: 加速度計訊號心電圖睡眠階層決策樹式支持向量機
外文關鍵詞: Acceleration signal, Electrocardiogram, Sleep stage, Decision-tree-based support vector machines
相關次數: 點閱:156下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨在於開發自動睡眠階層判讀及睡眠效率估測之演算法,演算法利用心電及活動訊號進行訊號前處理、雜訊濾除後,從時域、頻域及非線性分析三方面產生多達30個特徵值,為消除每人之生理訊號特徵值單位的不同,在進入辨識分類器前進行正規化處理,之後再以循序向前選擇法搜尋重要之特徵值以當作辨識分類器之輸入參數,本論文中所使用的辨識分類器有最小平方支持向量機(基於多類分類之一對一方法和決策樹式方法)以及機率類神經網路分類器,應用在正常人及睡眠呼吸中止症族群上,首先,在睡眠階層的判讀方面與多重睡眠生理記錄儀的比較下,我們獲得平均81.31%(正常人)和75.32%(患者)的準確率;其次,在睡眠效率估測方面,我們在正常人方面僅有4.90%的誤差,而在患者方面有15.03%的誤差。結果顯示,此系統適合結合心電及活動訊號於居家環境下作使用,免除在醫院所作的多重睡眠生理記錄儀檢查之不適感與高成本。

    This thesis proposes an algorithm for sleep stage classification and sleep efficiency estimation using reduced features of ECG and activity signals. Initially, signals were preprocessed in order to remove artifacts from the ECG and activity signals. Secondly, 30 features were generated from the time-frequency domain and nonlinear analysis. Subsequently, the Z-score method was utilized to normalize all features in order to minimize the effect of differences in the ranges of values among different parameters. This study presents some tools for classifying the sleep stages of healthy and obstructive sleep apnea (OSA) subjects consisting of a least squares support vector machine (One-against-one method and Decision-tree based SVM) and a probabilistic neural network classifier. Comparing the resulting estimates with actual polysomnography data, average accuracies of 81.31% for healthy subjects and 75.32% for OSA patients were reported. In terms of sleep efficiency, the results demonstrate a bias of 4.9% and 15.03% error on sleep efficiency compared with PSG for healthy and OSA participants, respectively. The proposed strategy, being successfully validated by experimental data, may serve as a reasonably accurate tool for conveniently assessing sleep quality for long term monitoring in home-based environments.

    CHINESE ABSTRACT i ABSTRACT ii ACKNOWLEDGEMENTS iv TABLES OF CONTENTS v LIST OF TABLES vii LIST OF FIGURES viii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Survey 2 1.3 Purpose of the Study 6 1.4 Organization of the Thesis 7 Chapter 2 Experimental Procedure and Architecture 8 2.1 Experimental Design and Participants 8 2.2 System Hardware Architecture and Data Recording 10 2.3 Sleep Stages Scoring and Assessment of Sleep Stages State 15 Chapter 3 Automated Sleep Stages Classification Algorithm 23 3.1 Pre-processing 24 3.2 Noise Removal Processing 26 3.3 Windowing 26 3.4 Noisy Epoch Rejection 27 3.5 Feature Extraction 27 3.6 ECG-Based Feature Generation 28 3.7 Activity-Based Feature Generation 39 3.8 Feature Normalization 41 3.9 Feature Selection 42 3.10 Classifier for Recognition 43 3.10.1 One-Against-One Method 44 3.10.2 Decision-Tree-Based Support Vector Machines 46 3.10.3 Probabilistic Neural Network 47 Chapter 4 Experimental Results 50 4.1 Sleep Stages Recognition 50 4.1.1 The Results for Healthy Subjects 51 4.1.2 The Results for OSA Patients 55 4.2 Sleep Efficiency Estimation 59 Chapter 5 Discussions 62 5.1 Comparisons of Different Classification Tools 62 5.2 Some Limitations for OSA Patients 63 5.3 ECG and ACC+ECG Based Methods Comparison 63 5.4 Comparison with Other Existing Approaches (I) 65 5.5 Comparison with Other Existing Approaches (II) 66 5.6 Significant Features Selected from Each Analysis Domain 68 5.7 Arrangement of Nodes for PNN and DTB-SVM 72 Chapter 6 Conclusions and Future Work 75 6.1 Conclusions 75 6.2 Future Work 76 REFERENCES 78

    [1] D. F. Dinges, “An overview of sleepiness and accidents,” Journal of Sleep Research, vol. 4, pp. 4-14, 1995.
    [2] M. M. Macchi, Z. Boulos, T. Ranney, L. Simmons, and S. S. Campbell, “Effects of an afternoon nap on nighttime alertness and performance in long-haul drivers,” Accident Analysis and Prevention, vol. 34, pp. 825-834, 2002.
    [3] C. A. Kushida, A. Chang, C. Gadkary, C. Guilleminault, O. Carrillo, and W. C. Dement, “Comparison of actigraphic, polysomnographic, and subjective assessment of sleep parameters in sleep-disordered patients,” Sleep Medicine, vol. 2, pp. 389-396, 2001.
    [4] C. P. Pollak, W. W. Tryon, H. Nagaraja, and R. Dzwonczyk, “How accurately does wrist actigraphy identify the states of sleep and wakefulness?” Sleep, vol. 24, pp. 957-965, 2001.
    [5] B. Sivertsen, S. Omvik, O. E. Havik, S. Pallesen, B. Bjorvatn, G. H. Nielsen, S. Straume, and I. H. Nordhus, “A comparison of actigraphy and polysomnography in older adults treated for chronic primary insomnia,” Sleep, vol. 29, pp. 1353-1358, 2006.
    [6] R. J. Cole, D. F. Kripke, W. Gruen, D. J. Mullaney, and J. C. Gillin, “Automatic sleep/wake identification from wrist activity,” Sleep, vol. 15, pp. 461-469, 1992.
    [7] A. Sadeh, K. M. Sharkey, and M. A. Carskadon, “Fundamental research activity-based sleep-wake identification: An empirical test of methodological issues,” Sleep, vol. 17, pp. 201-207, 1994.
    [8] J. Lotjonen, I. Korhonen, K. Hirvonen, S. Eskelinen, M. Myllymaki, and M. Partinen, “Automatic sleep-wake and nap analysis with a new wrist worn online activity monitoring device vivago WristCare®,” Sleep, vol. 26, pp. 86-90, 2003.
    [9] J. Hedner, G. Pillar, S. D. Pittman, D. Zou, L. Grote, and D. P. White, “A novel adaptive wrist actigraphy algorithm for sleep-wake assessment in sleep apnea patients,” Sleep, vol. 27, pp. 1560-1566, 2004.
    [10] D. Wang, K. K. Wong, and G. C. Dungan, “The validity of wrist actimetry assessment of sleep with and without sleep apnea,” Journal of Clinical Sleep Medicine, vol. 4, pp. 450-455, 2008.
    [11] Standards of Practice Committee of the American Academy of Sleep Medicine, “Practice parameters for the role of actigraphy in the study of sleep and circadian rhythms: An update for 2002,” Sleep, vol. 26, pp. 337-341, 2003.
    [12] D. W. Hudget, R. J. Martin, B. Johnson, and P. Hill, “Mechanics of the respiratory system and breathing pattern during sleep in normal humans,” Journal of Applied Physiology, vol. 56, pp. 133-137, 1984.
    [13] N. J. Douglas, D. P. White, C. K. Pickett, J. V. Weil, and C. W. Zwillich, “Respiration during sleep in normal man,” Thorax, vol. 37, pp. 840-844, 1982.
    [14] G. S. Chung, B. H. Choi, J. S. Lee, J. S. Lee, D. U. Jeong, and K. S. Park, “REM sleep estimation only using respiratory dynamics,” Physiological Measurement, vol. 30, pp. 1327-1340, 2009.
    [15] S. J. Redmond and C. Heneghan, “Cardiorespiratory-based sleep staging in subjects with obstructive sleep apnea,” IEEE Trans. Biomedical Engineering, vol. 53, no. 3, pp. 485-496, 2006.
    [16] W. Karlen and D. Floreano, “Adaptive sleep–wake discrimination for wearable devices,” IEEE Trans. Biomedical Engineering, vol. 58, no. 4, pp. 920-926, 2011.
    [17] G. P. Nason, T. Sapatinas, and A. Sawczenko, “Wavelet packet modelling of infant sleep state using heart rate data,” Sankhya: The Indian Journal of Statistics, vol. 63, pp. 199-217, 2001.
    [18] L. Toscani, P. F. Gangemi, A. Parigi, R. Silipo, P. Ragghianti, E. Sirabella, M. Morelli, L. Bagnoli, R. Vergassola, and G. Zaccara, “Human heart rate variability and sleep stages,” The Italian Journal of Neurological Sciences, vol. 17, pp. 437-439, 1996.
    [19] S. Elsenbruch, M. J. Harnish, and W. C. Orr, “Heart rate variability during waking and sleep in healthy males and females,” Sleep, vol. 22, pp. 1067-1071, 1999.
    [20] T. Penzel, J. W. Kantelhardt, L. Grote, J. H. Peter, and A. Bunde, “Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea,” IEEE Trans. Biomedical Engineering, vol. 50, pp. 1143-1151, 2003.
    [21] S. J. Redmond, P. De ChaZal, C. O’Brien, S. Ryan, W. T. McNicholas, and C. Heneghan, “Sleep staging using cardiorespiratory signals,” Somnologie, vol. 11, pp. 245-256, 2007.
    [22] A. Lewicke, E. Sazonov, M. J. Corwin, M. Neuman, and S. Schuckers, “Sleep versus wake classification from heart rate variability using computational intelligence: Consideration of rejection in classification models,” IEEE Trans. Biomedical Engineering, vol. 55, no. 1, pp. 108-118, 2008.
    [23] B. Yilmaz, M. H. Asyali, E. Arikan, S. Yetkin, and F. Özgen, “Sleep stage and obstructive apneaic epoch classification using single-lead ECG,” Biomedical Engineering Online, vol. 9, pp. 39, 2010.
    [24] J. M. Kortelainen, M. O. Mendez, A. M. Bianchi, M. Matteucci, and S. Cerutti, “Sleep staging based on signals acquired through bed sensor,” IEEE Trans. Information Technology in Biomedicine, vol. 14, no. 3, pp. 776-785, 2010.
    [25] M. Adnane and Z. Jiang, “Automatic sleep-wake stages classifier based on ECG,” ICROS-SICE International Joint Conference, 2009, pp. 493-498.
    [26] Z. Shinar, A. Baharav, Y. Dagan, and S. Akselrod, “Automatic detection of slow-wave-sleep using heart rate variability,” Computers in Cardiology, vol. 28, 2001, pp. 593-596.
    [27] A. T. Lewicke, E. S. Sazonov, and S. A. C. Schuckers, “Sleep-wake identification in infants: Heart rate variability compared to actigraphy,” in Proc. of 26th IEEE Annual International Conference on Engineering in Medicine and Biology Society, 2004, pp. 442-445.
    [28] H. Hagiwara, “Estimation of sleep stage in the falling asleep period using a lorenz plot of ECG RR intervals,” in Proc. of 31th IEEE Annual International Conference on Engineering in Medicine and Biology Society, 2009, pp. 2510-2513.
    [29] W. Karlen, C. Mattiussi, and D. Floreano, “Sleep and wake classification with ECG and respiratory effort signals,” IEEE Trans. Biomedical Circuits and Systems, vol. 3, pp. 71-78, 2009.
    [30] M. O. Mendez, M. Matteucci, V. Castronovo, L. Ferini-Strambi, S. Cerutti, and A. M. Bianchi, “Sleep staging from heart rate variability: Time-varying spectral features and hidden Markov models,” International Journal of Biomedical Engineering and Technology, vol. 3, pp. 246-263, 2010.
    [31] H. H. Jasper, “The ten-twenty electrode system of the International Federation,” Electroencephalography and Clinical Neurophysiology, vol. 10, pp. 371-375, 1958.
    [32] B. Kemp, A. Värri, A. C. Rosa, K. D. Nielson, and J. Gade, “A simple format for exchange of digitized polygraphic recordings,” Electroencephalography and Clinical Neurophysiology, vol. 82, pp. 391-393, 1992.
    [33] Freescale MMA7455L, http://www.freescale.com/files/sensors/doc/data_sheet/MMA7455L.pdf
    [34] S. F. Quan, J. C. Gillin, M. R. Littner, and J. W. Shepard, “Sleep-related breathing disorders in adults: Recommendations for syndrome definition and measurement techniques in clinical research. Editorials,” American Academy of Sleep Medicine, vol. 22, pp. 662-689, 1999.
    [35] A. Rechtschaffen and A. Kales, Eds., A Manual of Standardized Terminology, Techniques, and Scoring System for Sleep Stages of Human Subjects. U.S. Department of Health, Education and Welfare, 1968.
    [36] C. Iber, S. Ancoli-Israel, A. Chesson, and S. F. Quan, “The AASM manual for the scoring of sleep and associated events: Rules, terminology and technical specifications,” American Academy of Sleep Medicine, Westchester, 2007.
    [37] P. McNamara, D. McLaren, and K. Durso, “Representation of the self in REM and NREM dreams,” Dreaming, vol. 17, pp. 113-126, 2007.
    [38] Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, “Heart rate variability: standards of measurement, physiology interpretation, and clinical use,” Circulation, vol. 93, pp. 1043-1065, 1996.
    [39] J. Trinder, J. Kleiman, M. Carrington, S. Smith, S. Breen, N. Tan, and Y. Kim, “Autonomic activity during human sleep as a function of time and sleep stage,” Journal of Sleep Research, vol. 10, pp. 253-264, 2001.
    [40] J. Pan and W. J. Tompkins, “A real-time QRS detection algorithm,” IEEE Trans. Biomedical Engineering, vol. 32, no. 3, pp. 230-236, 1985.
    [41] P. S. Hamilton and W. J. Tompkins, “Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database,” IEEE Trans. Biomedical Engineering, vol. 33, no. 12, pp. 1157-1165, 1986.
    [42] G. Jean-Louis, D. F. Kripke, W. J. Mason, J. A. Elliott, and S. D. Youngstedt, “Sleep estimation from wrist movement quantified by different actigraphic modalities,” Journal of neuroscience methods, vol. 105, pp. 185-191, 2001.
    [43] M. P. Tulppo, T. H. Mäkikallio, T. E. S. Takala, T. Seppänen, and H. V. Huikuri, “Quantitative beat-to-beat analysis of heart rate dynamics during exercise,” American Journal of Physiology-Heart and Circulatory Physiology, vol. 271, pp. H244-252, 1996.
    [44] G. D. Vito, S. D. R. Galloway, M. A. Nimmo, P. Maas, and J. J. V. McMurray, “Effects of central sympathetic inhibition on heart rate variability during steady-state exercise in healthy humans,” Clinical Physiology and Functional Imaging, vol. 22, pp. 32-38, 2002.
    [45] S. B. Park, Y. S. Noh, S. J. Park, and H. R. Yoon, “An improved algorithm for respiration signal extraction from electrocardiogram measured by conductive textile electrodes using instantaneous frequency estimation,” Medical and Biological Engineering and Computing, vol. 46, pp. 147-158, 2008.
    [46] R. Bailón, L. Sörnmo, and P. Laguna, “A robust method for ECG-based estimation of the respiratory frequency during stress testing,” IEEE Transactions Biomedical Engineering, vol. 53, no. 7, pp. 1273-1285, 2006.
    [47] C. O’Brien and C. Heneghan, “A comparison of algorithms for estimation of a respiratory signal from the surface electrocardiogram,” Computers in Biology and Medicine, vol. 37, pp. 305-314, 2007.
    [48] P. Pudil, F. J. Ferri, J. Novovicova, and J. Kittler, “Floating search methods for feature selection with nonmonotonic criterion functions,” Proceedings of the 12th IAPR International Conference on Pattern Recognition, vol. 2, 1994, pp. 279-283.
    [49] S. J. Reeves and Z. Zhe, “Sequential algorithms for observation selection,” IEEE Trans. Signal Processing, vol. 47, no. 1, pp. 123-132, 1999.
    [50] J. A. K. Suykens and J. Vandewalle, “Least squares support vector machine classifiers,” Neural Processing Letters, vol. 9, pp. 293-300, 1999.
    [51] C. W. Hsu and C. J. Lin, “A comparison of methods for multiclass support vector machines,” IEEE Trans. Neural Networks, vol. 13, no. 2, pp.415-425, 2002.
    [52] X. Yuan, W. Lai, T. Mei, X. S. Hua, X. Q. Wu, and S. Li, “Automatic video genre categorization using hierarchical SVM,” in Proc. of IEEE International Conference on Image Processing, 2006, pp. 2905-2908.
    [53] K. Z. Mao, K. C. Tan, and W. Ser, “Probabilistic neural-network structure determination for pattern classification,” IEEE Trans. Neural Networks, vol. 11, no. 4, pp. 1009-1016, 2000.
    [54] D. F. Specht, “Probabilistic neural network,” Neural Networks, vol. 3, pp. 109-118, 1990.
    [55] L. J. Gula, A. D. Krahn, A. Skanes, K. A. Ferguson, C. George, R. Yee, and G. J. Klein, “Heart rate variability in obstructive sleep apnea: A prospective study and frequency domain analysis,” Annals of Noninvasive Electrocardiology, vol. 8, no. 2, pp. 144-149, 2003.
    [56] S. Canisius, T. Ploch, T. Penzel, D. Krefting, A. Jerrentrup, and K. Kesper, “Heart rate spectrum analysis for the automated classification of sleep stages,” World Congress on Medical Physics and Biomedical Engineering, 2009, pp. 782-785.
    [57] Y. Fischer, B. Junge‐hulsing, G. Rettinger, and A. Panis, “The use of an ambulatory, automatic sleep recording device (QUISITM Version 1.0) in the evaluation of primary snoring and obstructive sleep apnoea,” Clinical Otolaryngology & Allied Sciences, vol. 29, pp. 18-23, 2004.
    [58] M. Schweitzer, A. Mohammad, R. Binder, R. Steinberg, W. H. Schreiber, and H. G. Weess, “BioSomnia–validity of a mobile system to detect sleep and sleep quality,” Somnologie, vol. 8, pp. 131-138, 2004.
    [59] J. Caffarel, G. J. Gibson, J. P. Harrison, C. J. Griffiths, and M. J. Drinnan, “Comparison of manual sleep staging with automated neural network-based analysis in clinical practice,” Medical and Biological Engineering and Computing, vol. 44, pp. 105-110, 2006.
    [60] K. Wright, J. Johnstone, S. Febregas, and J. Shambroom, “Evaluation of a portable dry sensor based on autonomatic sleep monitoring system,” Sleep, vol. 31, pp. A337, 2008.
    [61] D. Popovic, I. Ayappa, P. Hauri, D. Levendowski, V. Velimirovic, O. Burschtin, D. M. Rapoport, and P. Westbrook, “Accuracy of automated sleep staging using signals from a single forehead site,” Sleep, vol. 31, pp. 332, 2008.
    [62] O. Ajilore, R. Stickgold, C. D. Rittenhouse, and J. A. Hobson, “Nightcap: Laboratory and home-based evaluation of a portable sleep monitor,” Psychophysiology, vol. 32, pp. 92-98, 1995.
    [63] J. Virkkala, R. Velin, S. L. Himanen, A. Varri, K. Muller, and J. Hasan, “Automatic sleep stage classification using two facial electrodes,” Conference Proceeding of the IEEE Engineering in Medicine and Biology Society, 2008, pp. 1643-1646.
    [64] J. Alihanka, K. Vaahtoranta, and I. Saarikivi, “A new method for long-term monitoring of the ballistocardiogram, heart rate, and respiration,” American Journal of Physiology, vol. 240, pp. 384-392, 1981.
    [65] T. Kirjavainen, D. Cooper, O. Polo, and C. Sullivan, “Respiratory and body movements as indicators of sleep stage and wakefulness in infants and young children,” Journal of Sleep Research, vol. 5, pp. 186-194, 1996.
    [66] B. H. Jansen and K. Shankar, “Sleep staging with movement-related signals,” International Journal of Bio-medical Computing, vol. 32, pp. 289-297, 1993.
    [67] B. H. Choi, J. W. Seo, J. M. Choi, H. B. Shin, J. Y. Lee, D. U. Jeong, and K. S. Park, “Non-constraining sleep/wake monitoring system using bed actigraphy,” Medical and Biological Engineering and Computing, vol. 45, pp. 107-114, 2007.
    [68] H. Otzenberger, C. Simon, C. Gronfier, and G. Brandenberger, “Temporal relationship between dynamic heart rate variability and electroencephalographic activity during sleep in man,” Neuroscience Letters, vol. 229, pp. 173-176, 1997.
    [69] H. Otzenberger, C. Gronfier, C. Simon, A. Charloux, J. Ehrhart, F. Piquard, and G. Brandenberger, “Dynamic heart rate variability: A tool for exploring sympathovagal balance continuously during sleep in men,” American Journal of Physiology-Heart and Circulatory Physiology, vol. 275, pp. H946-950, 1998.
    [70] A. Baharav, S. Kotagal, V. Gibbons, B. K. Rubin, G. Pratt, J. Karin, and S. Akselrod, “Fluctuations in autonomic nervous activity during sleep displayed by power spectrum analysis of heart rate variability,” Neurology, vol. 45, pp. 1183-1187, 1995.
    [71] B. V. Vaughn, S. R. Quint, J. A. Messenheimer, and K. R. Robertson, “Heart period variability in sleep,” Electroencephalography and Clinical Neurophysiology, vol. 94, pp. 155-162, 1995.

    下載圖示 校內:2022-02-08公開
    校外:2022-02-08公開
    QR CODE