簡易檢索 / 詳目顯示

研究生: 艾琳
Aveline, Tania Meira
論文名稱: 能源設施再生:龍門電廠轉型為釩液流儲能電廠設施之評估
Charging Tomorrow: Evaluation of Repurposing the Longmen Site into VRFB Storage Facility
指導教授: 王筱雯
Wang, Hsiao-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程國際碩博士學位學程
International Master/Doctoral Degree Program on Energy Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 102
中文關鍵詞: 釩液流電池儲能系統社區場域再利用共生
外文關鍵詞: VRFB, Storage System, Community, Repurposing, Co-existence
相關次數: 點閱:3下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣北東電網持續面臨電力供應與需求不匹配的挑戰。此挑戰主要受到電廠除役、用電需求持續成長,以及對液化天然氣(Liquefied Natural Gas/LNG)與間歇性再生能源依賴上升等因素影響,而這些因素對電網的穩定性與彈性造成壓力。北東電網內的龍門核電廠場址原規劃為大型核能電廠之用,具電網戰略位置與饋線併網條件,卻長期閒置未被充分利用。本研究探討以龍門電廠場址轉型為一座電網級儲能設施的潛力,評估其是否能增進北東電網韌性。
    本研究透過一系列以 PLEXOS 電業建模軟體進行排程,模擬龍門電廠採用釩液流還原液流電池(Vanadium Redox Flow Battery/VRFB)技術進行充放電營運。研究方法評估多種技術情境(電池營運時長、冬夏季場景、北部電網發電機啟停用),並以放電時長最佳化、輸電壅塞緩解、能源自給率提升與尖峰削減能力作為主要績效指標。模擬結果顯示,「8小時儲能系統+協和電廠」可為電網有效削減高達 1,500 MW 的尖峰電力需求,提供最具韌性的解決方案。
    在工程分析的基礎上,本研究進一步拓展至財務、環境與空間層面的考量。以財務面而言,首先評估系統營運者的損益平衡成本、探討建立結構化社區基金的可能性、並得出冬夏季時段兩種情境的平均服務成本,其中 「4 小時儲能系統+協和電廠」為每度新台幣 2.5 元,「8 小時儲能系統+協和電廠」為每度新台幣 3.6 元,反映出儲能系統在不同放電時長條件下的冬夏季時段平均服務成本。環境面強調 VRFB 技術具備良好的回收再利用特性;空間面則凸顯龍門閒置場址之再利用潛力,以及與社區共效益的重要性。
    本研究亦建議大型能源基礎設施開發時須考量公正性問題,因國家電網所獲得的效益,往往是以在地社區承擔建設與營運負擔為代價,而社區卻鮮少獲得實質回報。本研究提出,儲能電廠想像可如何與龍門電廠廠址結合,冀能啟發地方與電廠的共生方式,確保社區能共享能源轉型所創造的價值。

    The northeastern power grid in Taiwan faces an energy imbalance, characterized by a persistent mismatch between local electricity supply and demand. This imbalance has strained the grid’s ability and flexibility which is provoked by the decommissioning of an aging power plant, growing electricity demand, and rising dependence on liquefied natural gas (LNG) and intermittent renewable sources. In response, this study explores the potential of repurposing the abandoned Longmen Nuclear Power Plant site into a grid-scale energy storage facility based on Vanadium Redox Flow Battery (VRFB) technology. The site is underutilized despite strategic location and grid access. A series of PLEXOS-based simulations evaluate multiple technical scenarios with key performance indicators including discharge duration optimization, transmission congestion relief, energy self-sufficiency, and peak shaving capability. These assessments reveal an optimal configuration, 8-hour BESS together with Hsieh-Ho Power Plant online, effectively shaving up to 1,500 MW from peak demand while maintaining sufficient headroom for additional flexibility. Building upon the optimal configuration result, the study extends the analysis into broader financial, environmental, and spatial considerations. The financial analysis assesses the system operator’s breakeven costs and explores the potential for establishing a structured community fund. The average service cost values – NT$ 2.5 /kWh for the 4-hour system and NT$ 3.6 /kWh for the 8-hour system, represent the estimated unit cost of service provided by the BESS under two different scenarios, reflecting short-term revenue efficiency rather than long-term system suitability. Environmental consideration emphasizes VRFB’s recyclability. Spatial consideration highlights the repurpose of an idle, state-owned site. Importantly, technical analysis bridges a common issue in large-scale energy projects, where national grid benefits often overlook host communities. By aligning system improvements with local benefits, this study promotes a more inclusive approach, repurposing abandoned infrastructure into a sustainable asset that strengthens resilience and supports community co-existence.

    Abstract ii 摘要 iii ACKNOWLEDGEMENTS iv TABLE OF CONTENTS v LIST OF TABLES vii LIST OF FIGURES viii CHAPTER 1 INTRODUCTION 1 1.1 Overview of Taiwan’s energy 1 1.1.1 Higher risk of planned and unplanned blackouts 3 1.1.2 Over-reliance on LNG and limited fuel reserves 4 1.1.3 Increasing demand with no sufficient backup capacity 5 1.1.4 Renewable energy intermittency and grid instability 5 1.2 Regional Grid Problem 6 1.3 Preliminary consideration of repurposing the study site into an energy storage facility 6 CHAPTER 2 RESEARCH QUESTIONS AND OBJECTIVES 9 2.1 Research question 9 2.2 Objectives 9 CHAPTER 3 LITERATURE REVIEW 11 3.1 Understanding Vanadium Redox Flow Battery (VRFB) 11 3.1.1 VRFB operational principles 11 3.1.2 Technology comparison 12 3.1.3 VRFB role in peak shaving and load levelling 14 3.1.4 VRFB Physical Viability 15 3.2 Feasibility assessment and important factors for successful project 16 3.2.1 Case Studies 16 3.2.2 Recognizing the role of other factors in feasibility 18 3.3 Understanding “path to co-existence” 18 CHAPTER 4 METHODOLOGY 21 4.1 Study site 21 4.2 Alternative future method and scenario design 25 4.3 Tool used: PLEXOS 27 4.3.1 Overview of PLEXOS Modeling 27 4.3.2 Simulation design and objectives 28 4.3.3 Key output metrics and implications to broader evaluation 30 4.4 Data used 31 4.4.1 Load demand and generation capacity data 31 4.4.2 Seasonal horizon selection 32 4.4.3 Identifying important transmission lines 32 CHAPTER 5 RESULTS 34 5.1 No-Built Scenario Assessment 34 5.2 “Built” Scenario Assessment 39 5.2.1 4-hour BESS 39 5.2.2 8-hour BESS 52 5.3 Comprehensive comparison across scenarios 65 CHAPTER 6 DISCUSSION AND LIMITATIONS 75 6.1 Technical deployment and grid reliability 75 6.2 Financial evaluation 76 6.2.1 IRR and NPV: Cost recovery potential 77 6.2.2 Community dividend fund: cost recovery with social value 80 6.3 Environmental and spatial discussions 81 6.4 Limitations 83 6.4.1 Scope constrains 83 6.4.2 Resource constraints 84 6.4.3 Technical limitations 84 CHAPTER 7 CONCLUSION 86 REFERENCES 89

    Adebayo, A. V., Adebayo, H. K., & Oladeji, S. (2024). Implementing electrical energy storage for improved voltage stability in power systems with substantial wind generation. International Journal of Modern Engineering Research, 14(4).
    Albertus, P., Manser, J. S., & Litzelman, S. (2020). Long-duration electricity storage applications, economics, and technologies Joule 4(1), 21 - 32 https://www.cell.com/joule/fulltext/S2542-4351(19)30539-2?uuid=uuid%3A8a2a3485-878b-4611-a032-c277a97fbd6f
    Atomic Energy Council, ;, & Executive Yuan, ;. (2020). Public safety guide to nuclear power and emergency preparedness Taipei, Taiwan: Atomic Energy Council, Executive Yuan, Taiwan
    Bureau of Energy, M. o. E. A. (2024). 2023 National Electricity Supply and Demand Report. https://www.moeaea.gov.tw
    Carroll, A. B. (2013). Caux Round Table Principles. In S. O. Idowu, N. Capaldi, L. Zu, & A. D. Gupta (Eds.), Encyclopedia of Corporate Social Responsibility (pp. 327-332). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-28036-8_14
    Chiu, Y.-T. (2004). Taipower's nuclear budget frozen Taipei Times
    Choi, C., Kim, S., Kim, R., Choi, Y., Kim, S., Jung, H.-y., Yang, J. H., & Kim, H.-T. (2017). A review of vanadium electrolytes for vanadium redox flow batteries. Renewable and Sustainable Energy Reviews, 69, 263 - 274. https://doi.org/https://doi.org/10.1016/j.rser.2016.11.188
    Chua, K. H., Lim, Y. S., & Morris, S. (2016). Energy storage system for peak shaving. International Journal of Energy Sector Management 10 3 - 18. https://doi.org/10.1108/IJESM-01-2015-0003
    Cole, W., & Karmakar, A. (2023). Cost projections for utility-scale battery storage: 2023 update. https://docs.nrel.gov/docs/fy23osti/85332.pdf
    Deguenon, L., Yamegueu, D., Kadri, S. M., & Gomma, A. (2023). Overcoming the challenges of integrating variable renewable energy to the grid: A comprehensive review of elecctrochemical battery storage systems. Journal of Power Sources, 580(233343). https://doi.org///doi.org/10.1016/j.jpowsour.2023.233343
    Donaldson, G. H., & João, E. M. (2020). Using green infrastructure to add value and assist place-making in public realm developments. Impact Assessment and Project Appraisal, 38(6), 464-478. https://doi.org/10.1080/14615517.2019.1648731
    Du, E., Jiang, H., Xiao, J., Hou, J., Zhang, N., & Kang, C. (2020). Preliminary analysis of long-term storage requirement in enabling high renewable energy penetration: A case of East Asia IET Renewable Power Generation 15(6). https://doi.org/https://doi.org/10.1049/rpg2.12104
    Energy Administration Ministry of Economic Affairs. (2024). Stable supply of natural gas. https://www.moeaea.gov.tw/ECW/english/content/Content.aspx?menu_id=8677
    Executive Yuan Press Releases. (2013). Unilaterally halting construction of Fourth Nuclear Power Plant would be illegal
    Feigenbaum, E. A., & Hou, J.-y. (2020). Overcoming Taiwan’s Energy Trilemma. https://carnegieendowment.org/2020/04/08/overcoming-taiwan-s-energy-trilemma-pub-81415
    Gao, A. M.-Z., Yeh, T. K., & Chen, J.-S. (2022). An unjust and failed energy transition strategy? Taiwan's goal of becoming nuclear-free by 2025. Energy Strategy Reviews, 44, 100991. https://doi.org/10.1016/j.esr.2022.100991
    Hilton, I. (2024). Why Taiwan and its tech industry are facing an energy crisis. YaleEnvironment360. https://e360.yale.edu/features/taiwan-energy-dilemma#:~:text=Taiwan's%20energy%20dilemma%20is%20a,quarantine%2C%20or%20invasion%20from%20China.
    Hong, Y.-Y., Apolinario, G. F. D., Chung, C.-N., Lu, T.-K., & Chu, C.-C. (2020). Effect of Taiwan's energy policy on unit commitment in 2025. Applied Energy, 277. https://doi.org/https://doi.org/10.1016/j.apenergy.2020.115585
    Hulse, D., Branscomb, A., Enright, C., & Bolte, J. (2008). Anticipating floodplain trajectories: A comparison of two laternative futures approaches. Landscape Ecology. https://doi.org/DOI: 10.1007/s10980-008-9255-2
    Kalair, A. R., Abas, N., Seyedmahmoudian, M., Rauf, S., Stojcevski, A., & Khan, N. (2021). Duck curve leveling in renewable energy integrated grids using internet of relays Journal of Cleaner Production, 294. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.126294
    Kim, S. (2017). Vanadium Redox Flow Batteries: Electrochemical Engineering In Energy Storage Devices IntechOpen. https://doi.org/http://dx.doi.org/10.5772/intechopen.85166
    Klar, J. P. (2024). A cost-effective future for electricity storage: An examination of LCOS studies on stationary applications. Junior Management Science 9(4), 2117 - 2139. https://doi.org/doi:10.5282/jums/v9i4pp2118-2139
    Ko, Y., Schubert, D. K., & Hester, R. T. (2011). A conflict of greens: Green devlopment versus habitat preservation - The case of Incheon South Korea. Environment: Science and Policy for Sustainable Development 53(3), 3 - 17 https://doi.org/https://doi.org/10.1080/00139157.2011.570640
    Kumuthawathe, A.-R., Ali, R., & Taniselass, S. (2017). Battery energy storage system assessment in a designed battery controller for load leveling and peak shaving applications. Journal of Renewable and Sustainable Energy 9(044107). https://doi.org/10.1063/1.4991455
    Leadbetter, J., & Swan, L. G. (2012). Selection of battery technology to support grid-integrated renewable electricity. . Journal of Power Sources, 216, 376-386.
    Lee, I.-C. (2013). Nuclear referendum question protested. Taipei Times
    Lee, L.-S. (2025). The nation's nuclear-free homeland is finally here Taipei Times https://www.taipeitimes.com/News/editorials/archives/2025/05/19/2003837114
    Li, L., Kim, S., Wang, W., Vijayakumar, M., Nie, Z., Chen, B., Zhang, J., Xia, G., Hu, J., Graff, G., Liu, J., & Yang, Z. (2011). A stable vanadium redox-flow battery with high energy density for large-scale energy storage. Advanced Energy Materials 1(3), 384 - 400.
    Lien, W. W. (2021). A landscape approach to the conflicts of green: Planning for energy and wetland land-use growth in southwestern Taiwan's coastal landscape in a climate-changing era University of Oregon ]. https://hdl.handle.net/1794/26129
    Lin, C.-y., Chang, H.-f., & Thompson, J. (2025). Legislature passes bill extending potential lifespan of nuclear plants Focus Taiwan https://focustaiwan.tw/politics/202505130024
    Liu, J. H., & Chu, C.-C. (2023). Causes and consequences of widespread power blackout across Taiwan on March 3,2022 2023 IEEE Industry Applications Society Annual Meeting Nashville, TN, USA.
    Liu, K.-Y. (2023). A charged debate: Taiwan's nuclear energy conundrum Commonwealth Magazine.
    Liu, T.-Y., Chen, P.-H., Chou, N. N. S., & Hsieh, T.-Y. (2020). Technical and non-technical challenges for the Lungmen nuclear power plant project in Taiwan Journal of the Chinese Institute for Engineers 43, 666 - 680. https://doi.org/10.1080/02533839.2020.1777203.
    Lourenssen, K., Williams, J., Ahmadpor, F., Clemmer, R., & Tasnim, S. (2019). Vanadium redox flow batteries: A comprehensive review. Journal of Energy Storage 25.
    Lu, C.-N. (2023). 龍門「整合型電力園區」規劃應納入北部電網操作韌性考量 Liberty Times Talk. https://talk.ltn.com.tw/article/paper/1562270
    Maisch, M. (2024). World's largest vanadium redox flow project completed. pv magazine energy storage. https://www.ess-news.com/2024/12/09/worlds-largest-vanadium-redox-flow-project-completed/
    Mauger, A., & Julien, C. M. (2017). Critical review on lithium-ion batteries: are they safe? Sustainable? Ionics, 23(8), 1933-1947. https://doi.org/10.1007/s11581-017-2177-8
    McGillis, J. (2023). Taiwan’s Electrical Grid and the Need for Greater System Resilience. In Global Taiwan Brief (Vol. 8): Global Taiwan Institute.
    Minami, T. (2024). Facing the potential of a maritime blockade, can Taiwan reduce the vulnerabilities in its power system and establish energy security? The Diplomat. https://thediplomat.com/2024/06/taiwans-energy-security-under-threat/
    National Development Council. (2021). 將龍門核電廠轉型為大型儲能設施. Retrieved June 27 from https://join.gov.tw/idea/detail/10e189d9-aa56-4667-b3b8-d90a97db8559
    Nuclear Engineering International. (2021). Taiwan to hold August referendum on restarting Lungmen. Progressive Media International.
    Odesanmi, I. (2024). A study of long duration energy storage technologies' readiness as grid-balancing solutions Aalto University ]. https://urn.fi/URN:NBN:fi:aalto-202408255668
    Reihani, E., Motalleb, M., Ghorbani, R., & Saoud, L. S. (2016). Load peak shaving and power smoothing of a distribution grid with high renewable energy penetration. Renewable Energy 86, 1372 - 1379.
    Roberts, D. (2022). A techno-economic analysis of lithium-ion and vanadium redox flow batteris for behind-the meter commercial/industry applications with a focus on achievable efficiency and degradation rates The University of Sheffield].
    Rodby, K. E., Carney, T. J., Gandomi, Y. A., Barton, J. L., Darling, R. M., & Brushett, F. R. (2020). Assessing the levelized cost of vanadium redox flow batteries with capacity fade and rebalancing Journal of Power Sources, 460, 227958. https://doi.org/https://doi.org/10.1016/j.jpowsour.2020.227958
    Sandia National Laboratories. (2002). Boulder city battery energy storage feasibility study.
    Shih, H.-C. (2013). Nuclear referendum recieves go-ahead. Taipei Times.
    Sumitomo Electric Industries. (2025). Flow battery product variations. Retrieved June 27, 2025 from https://sumitomoelectric.com/products/flow-batteries/product-variations
    Taiwan Power Company. (2014). Seventh transmission and substation plan: Revised plan. Taipei, Taiwan Taiwan Power Company,,
    Taiwan Power Company. (2019). Nuclear power status and performance Retrieved May 20, 2025 from https://www.taipower.com.tw/2764/2826/2842/2844/25134/normalPost
    Taiwan Power Company. (2023). Power plant operation status Retrieved June 27, 2025 from
    Taiwan Power Company. (2024a). Major operating performance indicators in the past 10 years Retrieved 2025-03-11 from https://www.taipower.com.tw/2764/2826/2835/2841/25121/normalPost#:~:text=On%20May%2013%20and%2017,2022%2C%20a%20major%20outage%20occurred.
    Taiwan Power Company. (2024b). Power development planning: Illustration of reserve margin. Retrieved 2025-03-03 from https://www.taipower.com.tw/2764/2826/2829/2834/25099/normalPost
    Taiwan Power Company. (2025). Electricity development operational support fund Retrieved 13 May 2025 from https://www.taipower.com.tw/2289/2484/51434/52189/
    Tian, L., Shen, X., He, W., & Chen, Y. (2024). Adaptability assessment and optimal configuration of vanadium flow and lithium-ion battery energy storage in renewable energy generation stations. 2024 9th Asia Conference on Power and Electrical Engineering 596 - 600. https://doi.org/10.1109/ACPEE60788.2024.10532600
    Tseng, C.-y., Wu, H.-y., & Kao, E. (2025). Taiwan enters 'nuclear-free' homeland era Focus Taiwan https://focustaiwan.tw/business/202505180013
    Viswanathan, V. V., Crawford, A. J., Thomsen, E. C., Shamim, N., Li, G., Huang, Q., & Reed, D. M. (2023). An Overview of the Design and Optimized Operation of Vanadium Redox Flow Batteries for Durations in the Range of 4–24 Hours. Batteries, 9(4), 221. https://www.mdpi.com/2313-0105/9/4/221
    Wang, H.-W., & Chang-Chien, L.-R. (2023). Long-Term Integrated Resource Planning for Taiwan'S Energy Pathways and Transition: a Participatory Scenario Study( II ). http://140.116.207.99/handle/987654321/307050
    Wang, H.-W., Dodd, A., Kuo, P.-H., & LePage, B. (2018). Science as a Bridge in Communicating Needs and Implementing Changes towards Wetland Conservation in Taiwan. Wetlands, 38(6), 1223-1232. https://doi.org/https://doi.org/10.1007/s13157-018-1096-4
    Weber, S., Peters, F. J., Baumann, M., & Weil, M. (2018). Life cycle assessment of a vanadium redox flow battery Environmental Science & Technology 52(18), 10864 - 10873.
    World Nuclear Association (2022). Nuclear Power in Taiwan https://world-nuclear.org/information-library/country-profiles/others/nuclear-power-in-taiwan.aspx
    Yeh, S.-p., & Thompson, J. (2025). Nuclear reactor to close as planned despite law change: President Lai. Focus Taiwan https://focustaiwan.tw/politics/202505140020

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE