簡易檢索 / 詳目顯示

研究生: 王培筠
Wang, Pei-Yun
論文名稱: 兩相介質中 Klebsiella oxytoca 酯解酵素對外消旋 alpha 醇酯之動力分割
Kinetic resolution of (R,S)-alpha-hydroxy acid esters via Klebsiella oxytoca hydrolase in biphasic media
指導教授: 陳特良
Chen, Teh-Liang
蔡少偉
Tsai, Shau-Wei
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 171
中文關鍵詞: 水解分割固定化外消旋alpha-醇酯Klebsiella oxytoca 水解酵素 (SNSM-87)
外文關鍵詞: immobilization, Klebsiella oxytoca hydrolase (SNSM-87), kinetic resolution, (R S)-alpha-hydroxy acid esters
相關次數: 點閱:52下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中我們首次應用具熱穩定性的Klebsiella oxytoca 水解酵素(SNSM-87)為立體選擇性觸媒,於兩相介質中進行外消旋alpha-醇酯之水解分割,結果顯示結合介質工程(操作條件)、基質工程(醯基和離去醇基)和酵素固定化技術具有可以改善酵素鏡像選擇性或催化活性的效果。
    首先以兩相介質中SNSM-87進行外消旋扁桃酸乙酯之水解分割為例,探討溶劑種類、溫度、pH、產物抑制、酵素使用量和基質濃度等各種反應條件對於酵素行為的影響。得到最佳操作條件為:緩衝溶液之pH在7和8之間、反應溫度45oC且酵素量不少於0.5 mg/mL,此時酵素具S選擇性(E = 56)並可在異辛烷相獲得單一鏡像異構R型扁桃酸乙酯。
    再以SNSM-87作為觸媒於兩相介質中進一步水解外消旋鄰氯扁桃酸乙酯,所產生的R型鄰氯扁桃酸是合成Clopidogrel的重要中間物。研究各種操作條件對於酵素催化活性和鏡像選擇性的影響,獲得最佳條件為:反應溫度55oC、異辛烷為有機相以及含有2 mg/ml酵素的pH 6緩衝溶液為水相。在此最佳條件下進行動力分析,接著在酵素分割反應中進一步考慮酸抑制和非酵素催化水解,發現實驗和理論的轉化率對時間變化圖十分吻合。
    利用外消旋鄰氯扁桃酸酯為基質,探討不同離去醇基對於酵素催化活性和選擇性的影響中,我們採用速率決定步驟為醯化步驟,且利用擴展的Michaelis-Menten機構進行動力分析。發現含有難離去醇基的S型鄰氯扁桃酸酯和含有各種不同的離去醇R型鄰氯扁桃酸酯一樣,兩者速率決定步驟均為四面中間體斷鍵形成acyl-enzyme中間體。然而對於含有易離去醇基的S型鄰氯扁桃酯,形成四面中間體才是速率決定步驟,故導致甲酯有最佳的鏡像選擇性。在兩相介質中也將SNSM-87應用到其他外消旋-醇酯的水解分割,並且發現甲酯擁有最高的選擇性和反應性。在兩相介質中以SNSM-87催化水解分割外消旋alpha-chlorophenyl acetate也得到對於反應快的R型有兩階段Brnsted斜率,但卻對於反應慢的S型酯只有一階段斜率的現象。並更進一步比較將alpha-氫氧基改為alpha-甲基或alpha-氯基時,對於SNSM-87和lipases之酵素催化活性、鏡像選擇性和光學選擇性的影響。
    將SNAM-87經由共價鍵結固定在經環氧活化的聚丙烯酸高分子 Eupergit C 250L上,發現溫度、pH和有機溶劑對於固定化酵素催化水解外消旋扁桃酸乙酯的催化活性和鏡像選擇性具有與自由酵素不同的影響。在pH 6、55oC並以異辛烷為有機相的反應條件下,固定化酵素對於S型扁桃酸乙酯維持30%以上的催化活性,並使E值從43.6增加至319。熱力學參數分析顯示,固定化酵素的–ΔΔH從自由酵素的20.1增加至42.0 kJ/mol,而且–ΔΔS也從31.0增加至81.5 J/mol K。動力分析顯示固定化SNSM-87的過渡狀態斷鍵的質子轉移變慢,特別是針對反應慢的R型酯。另外結合基質工程和酵素固定化技術,針對其它alpha-醇酯的分割,發現可以增加酵素鏡像選擇性,而且固定化酵素在兩相系統中可重複使用8次而不損失活性和鏡像選擇性。因此所開發之固定化程序可能是提供SNSM-87工業化應用在兩相介質中水解分割的解決方法。

    For the first time, the thermally stable Klebsiella oxytoca hydrolase (SNSM-87) is explored as an enantioselective biocatalyst for the hydrolytic resolution of (R,S)-alpha-hydroxy acid esters in biphasic media. In this study, we show how medium engineering (operating parameters), substrate engineering (acyl part and leaving alcohol) and enzyme immobilization can be combined to improve the enzymatic enantioselectivity or activity.
    The hydrolytic resolution of (R,S)-ethyl mandelate via SNSM-87 in biphasic media is first investigated. Effects of various process parameters such as solvent type, temperature, pH, product inhibition, enzyme loading and substrate concentration on the enzyme performance were studied, leading to the high enzyme (S)-enantioselectivity of E = 56 at 45oC for the reaction media consisting of isooctane and pH 7 buffer. The optimal conditions of pH between 7 and 8, temperature 45oC and enzyme loading no less than 0.5 mg/ml were proposed for obtaining optically pure (R)-ethyl mandelate remained in the organic phase.
    The hydrolytic resolution of (R,S)-ethyl 2-chloromandelate in biphasic media by using SNSM-87 as a promising biocatalyst is then reported for producing the desired (R)-ethyl 2-chloromandelate as an important intermediate for the synthesis of Clopidogrel. Effects of various operating parameters on the enzyme activity and enantioselectivity were systematically studied, from which the optimal condition of using isooctane as the organic phase, enzyme concentration of 2 mg/mL, temperature of 55oC, and pH 6 of the aqueous phase was selected. The kinetic constants were further estimated from the kinetic analysis at the optimal condition. By further considering the acid product inhibition and non-enzymatic hydrolysis for the enzymatic resolution, good agreements of the time-course conversions from experiments and the theoretical prediction were also obtained.
    For studying the effect of leaving alcohol on the enzymatic activity and enantioselectivity using (R,S)-2-chloromandelates as model substrates, an expanded Michaelis-Menten mechanism for the rate-limiting acylation step was adopted for the kinetic analysis. The fast-reacting (S)-2-chloromandelates containing a difficult leaving alcohol moiety, as well as that the slow-reacting (R)-2-chloromandelates in the whole range of leaving alcohol moieties, indicates that the breakdown of tetrahedral intermediates to acyl-enzyme intermediates is rate-limiting. However, the rate-limiting step shifts to the formation of tetrahedral intermediates for the (S)-2-chloromandelates containing an easy leaving alcohol moiety, and leads to an optimal enantioselectivity for the methyl ester substrate. The SNSM-87 is also explored as an enantioselective biocatalyst for the hydrolytic resolution of the other (R,S)-alpha-hydroxy acid esters in biphasic media, where the best methyl esters possessing the highest enantioselectivity and reactivity are selected and elucidated in terms of the structure-enantioselectivity correlations and substrate partitioning in the aqueous phase. Two-step Brnsted slopes for the fast-reacting (R)-ester but only one-step for the slow-reacting (S)-ester are further obtained in the hydrolytic resolution of (R,S)-alpha-chlorophenyl acetate in biphasic media. A replacement of the alpha-hydroxy moiety to alpha-methyl or alpha-chloro group has profound effects on changing the enzymatic activity, enantioselectivity and optical-preference for SNSM-87 and lipases.
    The Klebsiella oxytoca hydrolase was immobilized on epoxy-activated acrylic polymers Eupergit C 250L via covalent attachment. The effects of temperature, pH, and organic solvent on the enzymatic activity and enantioselective for the hydrolysis of (R,S)-ethyl mandelate were investigated. The immobilized enzyme retains more than 30% catalytic activity for the (S)-ethyl mandelate and increases the E value from 43.6 to 319 at pH 6 and 55oC with isooctane as the organic phase. An analysis of the thermodynamic parameters indicates that –ΔΔH increased from 20.1 to 42.0 kJ/mol as well as –ΔΔS from 31.0 to 81.5 J/mol K after immobilization when comparing with the free enzyme. The kinetic analysis for the immobilized SNSM-87 shows the slower proton transfer for the breakdown of transition state, especial for the slow reacting (R)-ester. In addition, the combination of substrate engineering and enzyme immobilization for the hydrolytic resolution of other (R,S)-alpha-hydroxy acid esters also results in an increase of enantioselectivity. The immobilized enzyme could be used in the repetitive manner more than 8 times without loss the activity and enantioselectivity in the biphasic system. Therefore, the immobilization procedure developed may provide a promising solution for the industrial application of SNSM-87 in biphasic system.

    FIGURES LEGEND………………………………………………................... X TABLES LIST…………………………………………………………………... XV SCHEMES LIST……………………….……………………………................. XVII NOMENCLATURE……………………………………………………………. XVIII 1 Introduction 1-1 Enantiomers…………………………………………………………1 1-1-1 Introduction…………………………………………… 1 1-1-2 Characterization and significance……………………………... 2 1-1-3 Preparation of enantiopure compounds………………………... 5 1-2 Enzymes…………………………………………………………………. 8 1-2-1 Introduction……………………………………………………. 8 1-2-2 Nomenclature and classification………………………………. 10 1-2-3 Basis of enzymes catalysis…………………………………….. 12 1-2-4 Applied biocatalysis in industry……………………………….. 13 1-2-5 Design of biocatalytic processes………………………………. 16 1-3 Kinetic resolution………………………………………………………... 18 1-3-1 Characterization……………………………………………….. 18 1-3-2 Methods for improving enzymatic enantioselectivity………… 20 1-3-3 Development of hydrolase-catalyzed kinetic resolution processes…22 1-4 Immobilization of enzymes……………………………………………… 24 1-4-1Introduction……………………………………………………. 24 1-4-2 Principles and methods………………………………………… 24 1-4-3 Supports………………………………………………………... 29 1-4-4 Immobilization by epoxy-activated covalent attachment……… 30 1-5 -Hydroxy acids…………………………………………………………. 32 1-5-1 Introduction……………………………………………………. 32 1-5-2 Biocatalytic routes to aromatic -hydroxy acids……………… 34 1-6 Motivation……………………………………………………………….. 35 2 Kinetic resolution of (R,S)-ethyl mandelate 2-1 Introduction……………………………………………………………… 37 2-2 Materials and methods…………………………………………………... 38 2-2-1 Materials…………………………………………………….…. 38 2-2-2 Analysis…………………………………………………….….. 38 2-2-3 Kinetic resolution of (R,S)-ethyl mandelate…………………… 39 2-3 Results and discussion…………………………………………………… 40 2-3-1 Screening of enzymes………………………….………………. 40 2-3-2 Effects of solvent……………………………….……………… 43 2-3-3 Effects of temperature………………………….……………… 45 2-3-4 Effects of product inhibition…………………………………… 45 2-3-5 Effects of enzyme loading……………………………………... 46 2-3-6 Effects of pH…………………………………………………... 49 2-3-7 Effects of substrate concentration……………………………... 50 2-4 Conclusions……………………………………………………………… 52 3 Kinetic resolution of (R,S)-ethyl 2-chloromandelate 3-1 Background……………………………………………………………… 53 3-2 Materials and methods…………………………………………………... 54 3-2-1Materials………………………………………………………. 54 3-2-2 Preparation of (R,S)-ethyl 2-chloromandelate………………… 54 3-2-3 Analysis………………………………………………………... 56 3-2-4 Kinetic resolution of (R,S)-ethyl 2-chloromandelate………….. 56 3-3 Model development……………………………………………………… 56 3-4 Results and discussion…………………………………………………… 58 3-4-1 Selection of organic solvent…………………………………… 58 3-4-2 Effects of enzyme concentration………………………………. 60 3-4-3 Effects of temperature…………………………………………. 62 3-4-4 Effects of pH…………………………………………………... 62 3-4-5 Kinetic analysis………………………………………………... 65 3-5 Conclusions……………………………………………………………… 68 4 Kinetic resolution of other (R,S)--hydroxy acid esters 4-1 Introduction………………………………………………………………69 4-1-1 Catalysis mechanism…………………………………………... 69 4-1-2 Kinetic resolution of other (R,S)--hydroxy acid esters………. 70 4-2 Materials and methods…………………………………………………... 73 4-2-1 Materials………………………………………………………. 73 4-2-2 Preparation of (R,S)--hydroxy acid esters…………………… 73 4-2-3 Synthesis of (R,S)-α-substituted-phenyl acetates……………… 74 4-2-4 Analysis………………………………………………………... 74 4-2-5 Kinetic analysis………………………………………………... 88 4-3 Model development……………………………………………………… 88 4-4 Results and discussion…………………………………………………… 92 4-4-1 Effects of leaving alcohol for (R,S)-2-chloromandelate……….. 92 4-4-2 Application to other (R,S)--hydroxy acid esters……………... 105 4-4-3 Effects of leaving alcohol for (R,S)--chlorophenyl acetate….. 114 4-4-4 Effects of changing the α-substituent………………………….. 118 4-5 Conclusion……………………………………………………………….. 125 5 Kinetic resolution of (R,S)--hydroxy acid esters via immobilized enzyme 5-1 Introduction……………………………………………………………… 126 5-2 Materials and methods…………………………………………………... 128 5-2-1 Materials……………………………………………………….. 128 5-2-2 Preparation of (R,S)-methyl 4-chloromandelate……………….. 128 5-2-3 Analysis………………………………………………………... 128 5-2-4 Immobilized procedure………………………………………... 130 5-2-5 Determination of enzyme loading……………………………... 130 5-2-6 Effects of temperature and pH, and stability test……………... 132 5-2-7 Kinetic analysis………………………………………………... 132 5-2-8 Thermodynamic analysis……………………………………… 132 5-3 Results and discussion…………………………………………………… 135 5-3-1 Effects of coupling time and enzyme concentration on enzyme immobilization………………………………………………… 135 5-3-2 Effects of organic solvent……………………………………… 137 5-3-3 Effects of pH and temperature………………………………… 139 5-3-4 Thermodynamic analysis……………………………………… 143 5-3-5 Kinetic analysis………………………………………………... 145 5-3-6 Stability in biphasic media…………………………………….. 147 5-3-7 Reusability…………………………………………………….. 148 5-3-8 Application to other (R,S)-alpha-hydroxy acid esters 149 5-4 Conclusion……………………………………………………… 152 6 Conclusion………………………………………………………… 153 7 Future Works 7-1 Improvement of substrate solubility in aqueous phase 155 7-2 Change of rate-limiting step for fast-reacting ester substrates…………………………………………………………… 155 7-3 Exploration of other immobilized supports………………156 7-4 Dynamic kinetic resolution………………………………… 156 7-5 Application to (R,S)-alpha-hydroxy acid esters……… 156 REFERENCE………………………………………………………………157 RESUME………………………………………………………………… 170

    Adam W, Lazarus M, Saha-Moller CR, Schreier P. 1999. “Biocatalytic synthesis of optically active -oxyfunctionalized carbonyl compounds”, Acc Chem Res 32: 837-845.
    Adamczak M, Krishna SH. 2004. “Strategies for improving enzymes for efficient biocatalysis”, Food Technol Biotechnol 42: 251-264.
    Akgol S, Bayramoglu G, Kacar Y. 2002. “Poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) reactive membrane utilised for cholesterol oxidase immobilization”, Polym Internat 51: 1316-1322.
    Anderson VE, Ruszczycky MW, Harris ME. 2006. “Activity of oxygen nucleophiles in enzyme catalysis”, Chem Rev 106: 3236-3251.
    Anthonsen T, D'Arrigo P, Pedrocchi-Fantoni G. 1999. “Phospholipids hydrolysis in organic solvents catalysed by immobilised phospholipase”, J Mol Cat B: Enzymatic 6: 125-132.
    Bai YX, Li YF, Wang MT. 2006. “Study on synthesis of a hydrophilic bead carrier containing epoxy groups and its properties for glucoamylase immobilization”, Enzyme Microb Technol 39: 540-547.
    Bairoch A. 1999. “The ENZYME Data Bank in 1999”, Nucleic Acids Res 27: 310-311.
    Bauer T, Gajewiak J. 2002. “ -Hydroxy carboxylic acids as ligands for enantioselective diethylzinc additions to aromatic and aliphatic aldehydes”, Tetrahedron: Asymmetry 60: 9163–9170.
    Bauer T, Gajewiak J. 2005. “-Hydroxy carboxylic acids as ligands for enantioselective addition reactions of organoaluminum reagents to aromatic and aliphatic aldehydes”, Tetrahedron: Asymmetry 16: 851–855.
    Bayramoglu G, Yilmaz M, Arica MY. 2004. “Immobilization of a thermostable alphaamylase onto reactive membranes: kinetics characterization and application to continuous starch hydrolysis”, Food Chem 84: 591-599.
    Beilen JBV, Li Z. 2002. “Enzyme technology: an overview”, Curr Opin Biotechnol 13: 338-344.
    Berglund P, Park S. 2005. “Strategies for altering enzyme reaction specificity for applied biocatalysis”, Curr Org Chem 9: 325-336.
    Bevinakatti HS, Banerji AA. 1988. “Lipase catalysis: Factors governing transesterification”, Biotechnol Lett 10: 397-398.

    Bickerstaff GF. 1997. “Immobilization of enzymes and cells” Humana Press, Totowa, New Jersey.
    Blacklock TJ, Sohar P, Butcher JW, Lamanec T, Grabowski EJJ. 1993. “An enantioselective synthesis of the topically active carbonic anhydrase inhibitor MK-0507: 5,6-dihydro-(S)-4-(ethylamino)-(S)-6-methyl-4H-thieno [2,3-b] thiopyran- 2-sulfonamide 7,7-dioxide hydrochloride”, J Org Chem 58: 1672–1679.
    Bocola M, Stubbs NT, Sotriffer C, Hauer B, Friedrich TF, Dittrich K, Klebe G.. 2003. “Structural and energetic determinants for enantiopreferences in kinetic resolution of lipases”, Protein Eng 16: 319-322.
    Boller T, Meier C, Menzler S. 2002. “Eupergit Oxirane acrylic beads: how to make enzymes fit for biocatalysis”, Org Proc Res Dev 6: 509-519.
    Bornsheuer UT, Kazlauskas RJ. 2006. “Hydrolases in organic synthesis”, 2nd ed Wiley-VCH: Weinheim.
    Bott RR, Chan G, Domingo B, Ganshaw G, Hsia CY, Knapp M, Murray CJ. 2003. “Do enzymes change the nature of transition state? Mapping the transition state for general acid-base catalysis of a serine protease”, Biochemistry 16: 10545-10553.
    Botta M, Corelli F, Manetti F, Tafi A. 2002. “Molecular modeling as a powerful technique for understanding small-large molecules interactions”, Farmaco 57: 153-165.
    Bousquet A, Musolino A. 2006. “Hydroxyacetic ester derivatives, preparation method and use as synthesis intermediates”, WO 9314007.
    Brands KMJ, Payack JF, Rosen JD, Nelson TD, Candelario A, Huffman MA, Zhao MM, Li J, Craig B, Song ZJ, Tschaen DM, Hansen K, Devine PN, Pye PJ, Rossen K, Dormer PG, Reamer RA, Welch CJ, Mathre DJ, Tsou NN, McNamara JM, Reider PJ. 2003. “Efficient synthesis of NK1 receptor antagonist Aprepitant using crystallization induced diastereoselective transformation”, J Am Chem Soc 125: 2129–2135.
    Briggs GE, Haldane JBS. 1925. “A Note on the Kinetics of Enzyme Action”, Biochem J 19: 338-339.
    Brown AJ. 1892. “Influence of Oxygen and Concentration on Alcohol Fermentation”, J Chem Soc 61: 369-385.
    Brown AJ. 1902. “Enzyme Action”, J Chem Soc 81: 373-386.
    Buchholz K, Kasche V, Bornscheuer UT. 2005. “Biocatalysts and enzyme technology”, Wiley-VCH: Weinheim.
    Buckland BC. 1999. “Microbial conversion of indene to indandiol a key intermediate in the synthesis of Crixivan”, Metab Eng 1: 63–74.
    Butler JAV. 1941. “Molecular Kinetics of Trypsin Action”, J Am Chem Soc 63: 2971-2974.
    Campbell RF, Fitzpatrick K, Inghardt T, Karlsson O, Nilsson K, Reilly JE. 2003. “Enzymatic resolution of substituted mandelic acids”, Tetrahedron Lett 44: 5477-5481.
    Capentier Jf, Mortreux A. 1997. “Asymmetric hydrogenation of (x-keto acid derivatives by rhodium-{amidophosphine-phosphinite} catalysts”, Tetrahedron: Asymmetry 8: 1083-1099.
    Carcia MJ, Brieva R, Rebolledo F, Gotor V. 1991. “Lithium chloride effect on phenylethyl-B-D-galactoside synthesis by Aspergillus oryzae B-D-galactosidase in the presence of high lactose concentration”, Biotechnol Lett 13: 867-870.
    Case A, Stein R. 2003. “Mechanistic origins of the substrate selectivity of serine proteases”, Biochemistry 42: 3335-3348.
    Cau L. 2005. “Carrier-bound immobilized enzymes : principles, application and design”, Wiley-VCH: Weinheim.
    Chan ASC, Zhang FY, Yip CW. 1997. “Novel asymmetric alkylation of aromatic aldehydes with ariethylaluminum catalyzed by titanium(1,1’-bi-2-naphthol) and titanium(5,5’,6,6’,7,7’,8,8’-octahydro-1,1’-bi-2-naphthol) complexes”, J Am Chem Soc 119: 4080-4091.
    Charton M, Ziffer H. 1987. “Contributions of steric, electrical, and polarizability effects in enantioselective hydrolyses with Rhizopus nigricans: a quantitative analysis”, J Org Chem 52: 2400-2403.
    Chen CC, Tsai SW, Villeneuve PJ. 2005. “Enantioselective hydrolysis of (R,S)-naproxen 2,2,2-trifluoroethyl ester in water-saturated solvents via lipases from Carica pentagona Heilborn and Carica papaya”, J Mol Cat B: Enzymatic 34: 51-57.
    Chen CS, Fujimoto Y, Girdaukas G, Sih CJ. 1982. “Quantitative analysis of biochemical kinetic resolutions of enantiomers”, J Am Chem Soc 104: 7294-7299.
    Chen Y and Hua W. 1999. “The Structural Features of Angiotensin-converting Enzyme Inhibitors”, Chemistry Online: 99001.
    Chikusa Y, Hirayama Y, Ikunaka M, Inoue T, Kamiyama S, Moriwaki M, Nishimoto Y, Nomoto F, Ogawa K, Ohno T, Otsuka K, Sakota AK, Shirasaka N, Uzura A, Uzura K. 2003. “There’s No Industrial Biocatalyst Like Hydrolase: Development of Scalable Enantioselective Processes Using Hydrolytic Enzymes”, Org Proc Res Dev 7: 289-296.
    Crosby J. 1992. “Chirality in Industry II”, Wiley-VCH: Weinheim.
    Cygler M, Grochulski P, Kazlauskas RJ, Schrag JD, Bouthillier F, Rubin B, Serreqi AN, Gupta AK. 1994. “Molecular basis for the chiral preference of lipases”, J Am Chem Soc 116: 3118-3186.
    Danisman T, Tan S, Kacar Y, Ergene A. 2004. “Covalent immobilization of invertase on microporous pHEMA–GMA membrane”, Food Chem 85: 461-466.
    Daugs ED. 2005. “Resolution of alpha-(phenoxy)phenylacetic acid derivatives”, WO 0033084.
    Davis BG. 2003. “Chemical modification of biocatalysts”, Curr Opin Biotechnol 14: 379-386.
    DeSantis G, Wong K, Farwell B, Chatman K, Zhu Z, Tomlinson G, Huang H, Tan X, Bibbs L, Chen P, Kretz K, Burk MJ. 2003. “Creation of a productive, highly enantioselective nitrilase through gene site saturation mutagenesis (GSSM)”, J Am Chem Soc 125: 11476–11477.
    DeSantis G, Zhu Z, Greenberg WA, Wong K, Chaplin J, Hanson SR, et al. 2002. “An enzyme library to biocatalysis: development of nitrilases for enantioselective production of carboxylic acid derivatives”, J Am Chem Soc 24: 9024-9025.
    Dirk E, Ralf M, Hauer B, Thomas F, Marion RL. 2000. “New nucleic acid sequence encoding Alcaligenes faecalis nitrilase polypeptide useful for converting racemic nitriles to chiral carboxylic acids”, WO 0023577.
    Dodson G, Wlodawer A. 1998. “Catalytic triads and their relatives”, Trends Biochem Sci 23: 347-352.
    Drauz K, Waldmann H. 2002. “Enzyme catalysis in organic synthesis”, Wiley-VCH: Weinheim.
    Dravis BC, LeJeune KE, Hetro AD, Russell AJ. 2000. “Enzymatic dehalogenation of gas phase substrates with haloalkane dehalogenase”, Biotechnol Bioeng 69: 235-241.
    Effenberger F, Schwaemmle A. 1997. “Preparation of (S)-cyanohydrins by enantioselective cleavage of racemic cyanohydrins with (R)-hydroxynitrile lyase”, Biocatal Biotransform 14: 167-179.
    Ema T, Maeno S, Takaya Y, Sakai T, Utaka M. 1996. “Kinetic resolution of racematic 2-substituted 3-cyclopenten-1-ols by lipase-catalyzed transesterifications: a rational strategy to improve enantioselectivity”, J Org Chem 61: 8610-8616.
    Faber K. 2004. “Biotransformation in Organic Chemistry”, 5th Ed. Springer-Verlag: Berlin.
    Federspiel M, Fischer R, Hennig M, Mair HJ, Oberhauser T, Rimmler G, Albiez T, Bruhin J, Estermann H, Gandert C, Gockel V, Gotzo S, Hoffmann U, Huber G, Janatsch G, Lauper S, Rockel-Stabler O, Trussardi R, Zwahlen AG. 1999. “Industrial synthesis of the key precursor in the synthesis of the anti-influenza drug Oseltamivir Phosphate (Ro 64- 0796/002, GS-4104-02): ethyl (3R,4S,5S)-4,5-epoxy-3-(1-ethyl- propoxy)-1- cyclohexene-1-carboxylate”, Org Proc Res Dev 3: 266–274.
    Fernandez-Lorente G, Fernandez-Lafuente R, Palomo JM, Mateo C, Bastida A, Coca J. 2001. “Biocatalyst engineering exerts a dramatic effect on selectivity of hydrolysis catalyzed by immobilized lipases in aqueous medium”, J Mol Catal B: Enzyme 11: 649-656.
    Fischer E. 1894. “Einfluss der Configuration auf die Wirkung der Enzyme”, Ber Dtsch Chem Ges 27: 2985-2993.
    Fischer E. 1894. “Synthesen in der Zuckergruppe II”, Ber Dtsch Chem Ges 27: 3189-3232.
    Fujii R, Nakagawa Y, Hiratake J, Sogabe A, Sakata K. 2005. “Directed evolution of Pseudomonas aerginosa lipase for improved amide-hydrolyzing activity”, Protein Eng Des Sel 18: 93-101.
    Gemeiner P. 1992. “Enzyme engineering”, Ellis Horwood, New York.
    Ghanem A, Aboul-Enein HY. 2004. “Lipase-mediated chiral resolution of racemates in organic solvent”, Tetrahedron: Asymmetry 15: 3331-3351.
    Ghanem A, Aboul-Enein HY. 2005. “Application of lipases in kinetic resolution of racemates”, Chirality 17: 1-15.
    Gileder A, Weis R, Skranc W, Poechlayer P, Dreveny I, Majer S. 2003. “Comprehensive step-by-step engineering of an (R)-hydroxynitrile lyase for large-scale asymmetric synthesis”, Angew Chem Int Ed 42: 4815–4818.
    Godfrey T, West S. 1996. “Data Index 4, Alphabetica Listing of Industrial Enzymes and Source in Industrial Enzymology”, 2nd ed, Stockton Press: New York.
    Gmez De Segura A, Alcalde M, Yates M, Rojas-Cervantes ML, Lpez-Corts N, Ballesteros A, Plou FJ. 2004. “Immobilization of Dextransucrase from Leuconostoc mesenteroides NRRL B-512F on Eupergit C Supports”, Biotechnol Prog 20: 1414-1420.
    Greenberg WA. 2004. “Development of an efficient, scaleable aldolase-catalyzed process for enantioselective synthesis of statin intermediates”, Proc Natl Acad Sci USA 101: 5788–5793.
    Grger H. 2001. “Enzymatic routes to enantiomerically pure aromatic -hydroxy carboxylic acids: a further example for the diversity of biocatalysis”, Adv Synth Catal 343: 527-546.
    Guo J and Frost JW. 2004. “Synthesis of aminoshikimic acid”, Org Lett 6: 1585–1588.
    Gupta MN, Roy I. 2004. “Enzymes in organic media. Forms, functions and applications”, Eur J Biochem 271: 2575-2583.
    Halling P. 1989. “Organic liquids and biocatalysts: theory and practice”, Trends Biotechnol 7: 50-52.
    Hansch C, Leo L, Taft RW. 1991. “A survey of Hammett substituent constants and resonance and field parameters”, Chem Rev 91: 165-195.
    Heffner F, Norin T. 1999. “Molecular modeling of lipase catalysed reactions. Prediction of enantioselectivities”, Chem Pharm Bull 47: 591-600.
    Hengge A, Stein RL. 2004. “Role of protein conformation mobility in enzyme catalysis: acylation of α-chymotrypsin by specific peptide substrates”, Biochemistry 43: 742-747.
    Hernndez-Jstiza O, Terreni M, Pagani G, Garca JL, Guisn JM, Fernndez-Lafuente R. 1999. “Evaluation of different enzymes as catalysts for the production of β-lactam antibiotics following a kinetically controlled strategy”, Enzyme Microb Technol 25: 336-343.
    Hirohara H, Nishizawa M. 1998. “Biochemical synthesis of several chiral insecticide intermediates and mechanisms of action of relevant enzymes”, Biosci Biotechnol Biochem 62:1-9.
    Holt RA. 1996. “Microbial asymmetric reduction in the synthesis of a drug intermediate”, Chim Oggi 14: 17-20.
    Hsia CY, Ganshaw G, peach C, Murray CJ. 1996. “Active-site titration of serine proteases using a fluoride ion selective electrode and sulfonyl fluoride inhibitors”, Anal Biochem 242: 221-227.
    Huang HR, Xu JH, Xu Y, Pan J, Liu X. 2005. “Preparation of (S)-mandelic acids by enantioselective degradation of racemates with a new isolate Pseudomonas putida ECU1009”, Tetrahedron: Asymmetry 16: 2113-2117.
    Huang HR, Xu JH. 2006. “Preparation of (S)-mandelic acid from racemate using growing cells of Pseudomonas putida ECU1009 with (R)-mandelate degradation activity”, Biochem Eng J 30: 11-15.
    Huerta FF, Laxmi YRS, Backvall JE. 2000. “Dynamic kinetic resolution of -hydroxy acid esters”, Org lett 2: 1037-1040.
    Ichikawa S, Takano K, Kuroiwa T, Hiruta O, Sato S, Mukataka S. 2002. “Immobilization and stabilization of chitosanase by multipoint attachment to agar gel support”, J Bioscien Bioeng 93: 201-206.
    Inagaki M, Hiratake J, Nishioka N, Oda J. 1992. “One-pot synthesis of optically active cyanohydrin acetates from aldehydes via lipase-catalyzed kinetic resolution coupled with in situ formation and racemization of cyanohydrins”, J Org Chem 57: 2634-2649.
    Ishida T, Kato S. 2003. “Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process”, J Am Chem Soc 125: 12035-12048.
    Jones MM, Williams JMJ. 1998. “Dynamic kinetic resolution in the hydrolysis of an -bromo ester”, Chem Comm 1: 2519-2520.
    Katchalski-Katzir E, Kraemer DM. 2000. “Eupergit  C, a carrier for immobilization of enzymes of industrial potential”, J Mol Catal B: Enzymatic10: 157-176.
    Kazlauskas RJ, Bornscheuer UT. 1998. “Biotransformations I”, Wiley-VCH: Weinheim.
    Keller R, Schlingmann M, Woernle R. 1987. “Production of 5´-ribonucleotides using immobilized 5´-phospho-diesterase”, Methods Enzymol 136: 517-522.
    Khalaf N, Govardhan CP, Lalonde JL, Persichetti RA, Wang YF, Margolin AL. 1996. “Cross-Linked Enzyme Crystals as Highly Active Catalysts in Organic Solvents”, J Am Chem Soc 118: 5494-5495.
    Kinbara K, Tagawa Y, Saigo K. 2001. “Probability of spontaneously resolvable conglomerates for racemic acid/racemic amine salts predicted on the basis of the results of diastereomeric resolutions”, Tetrahedron: Asymmetry 2: 2927-2930.
    Kirchner G, Scollar MP, Klibanov AM. 1985. “Resolution of racemic mixtures via lipase catalysis in organic solvents”, J Am Chem Soc 107: 7072-7076.
    Kirschbaum B, Wilbert G, Effenberger F. 2003. “Process for preparing optically active cynohydrins and secondary products”, EP 5076029.
    Kizaki N. 2001. “Synthesis of optically active ethyl 4-chloro-3-hydroxybutanoate by microbial reduction”, Appl Microbiol Biotechnol 55: 590-595.
    Klomp D, Peters JA, Hanefeld U. 2005. “Enzymatic kinetic resolution of tropic acid”, Tetrahedron: Asymmetry 16: 3892-3896.
    Lanne C, Boeren S, Vos K, Veeger C. 1987. “Rules for optimization of biocatalysis in organic solvents”, Biotechnol Bioeng 30: 81-87.
    Larissegger-Schnell B, Glueck SM, Kroutila W, Fabe K. 2006. “Enantio-complementary deracemization of (±)-2-hydroxy-4-phenylbutanoic acid and (±)-3-phenyllactic acid using lipase-catalyzed kinetic resolution combined with biocatalytic racemization”, Tetrahedron 62: 2912-2916.
    Lee SH, Choi JH, Park SH, Choi JI, Lee SY. 2004. “Enantioselective resolution of racemic compounds by cell surface displayed lipase”, Enzyme Microb Technol 35: 429-436.
    Liese A, Seelbach K, Wandrey C. 2000. “Industrial Biotransformations”, Wiley-VCH: Weinheim.
    Lin JH. 1998. “The integration of medicinal chemistry, drug metabolism, and pharmaceutical research and development in drug discovery and development. The story of Crixivan, an HIV protease inhibitor”, Pharm Biotechnol 11: 233–255.
    Lundhaug K, Overbeeke PLA, Jongejan JA, Anthonsen T. 1998. “Organic co-solvents restore the inherently high enantiomeric ratio of lipase B from Candida antarctica in hydrolytic resolution by relieving the enantiospecific inhibition of product alcohol ”, Tetrahedron Asymmetry 9: 2851-2855.
    Magnusson A, Hult K, Holmquist M. 2001. “Creation of an enantioselectivity hydrolase by engineering substrate-assisted catalysis”, J Am Chem Soc 123:4354-4355.
    Martin MT, Plou FJ, Alcalde M, Ballesteros A. 2003. “Immobilization on Eupergit C of cyclodextrin glucosyltransferase (CGTase) and properties of the immobilized biocatalyst”, J Mol Catal B: enzymatic 21: 299-308.
    Mateo C, Abian O, Fernndez-Lorente G, Pedroche J, Fernndez-Lafuente R, Guisan JM. 2002. “Epoxy sepabeads: a novel epoxy support for stabilization of industrial enzymes via very intense multipoint covalent”, Biotechnil Prog 18: 629-634.
    Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R. 2007. “Improvement of enzyme activity, stability and selectivity via immobilization techniques”, Enzyme Microb Technol 40: 1451-1463.
    Michaelis L, Menten ML. 1913. “Die Kinetik der Invertinwirkung”, Biochem 49: 333-369.
    Miyazawa T, Kurita S, Ueji S, Yamada T. 2000. “Resolution of mandelic acids by lipase-catalyzed transesterification in organic media”, Biocatal Biotransform 17: 459-473.
    Miyazawa T, Minowa H, Yamada T. 2006. “Enhancement of Enantioselectivity in the Bacillus subtilis Protease-catalyzed Hydrolysis of N-free Amino Acid Esters using the Ester Grouping-modification Approach”, Biotechnol Lett 28: 295-299.
    Miyazawa T, Shimaoka, M, Yamada T. 1999. “Resolution of 2-cyano-2-methylalkanoic acids via porcine pancreatic lipase-catalyzed enantioselective ester hydrolysis: Effect of the alcohol moiety of the substrate ester on enantioselectivity”, Biotechnol Lett 21: 309-312.
    Morrison JD, Mosher HS. 1971. “Asymmetric Organic Reactions”, Englewood Cliffs: New Jersey.
    Muller GW. 1997. “Thalidomide: From tragedy to new drug discovery”, Chen Tech 27: 21-25.
    Ng IS, Tsai SW. 2005. “Partially purified Carica papaya lipase: a versatile biocatalyst for the hydrolytic resolution of (R,S)-2-arylpropionic thioesters in water-saturated organic solvents”, Biotechnol Bioeng 91: 106-113.
    Nishizawa K, Ohgami Y, Matsuo N, Kisida H, Hirohara H. 1997. “Studies on hydrolysis of chiral, achiral and racemic alcohol esters with Pseudomonas cepacia lipase: mechanism of stereospecificity of the enzyme”, J Chem Soc Perkin Trans 2 26: 1293-1298.
    Ottosson J, Hult KJ. 2001. “Influence of acyl chain length on the enantioselectivity of Candida antarctica lipase B and its thermodynamic components in kinetic resolution of sec-alcohols”, J Mol Cat B: Enzymatic 11: 1025-1028.
    Palomo JM, Fernandez-Lorente G, Mateo C, Fuentes M, Fernandez-Lafuente R, Guisan JM. 2002. “Modulation of the enantioselectivty of Candida antartica B lipase via conformational engineering: kinetic resolution of (R,S)--hydroxy-phenylacetic acid derivatives”, Tetrahedron: Asymmetry 13: 1337-1345.
    Palomo JM, Fernandez-Lorente G, Rua ML, Guisan JM, Fernandez-Lafuente R. 2003. “Evaluation of the lipase from Bacillus thermocatenulatus as an enantioselective biocatalyst”, Tetrahedron: Asymmetry 14: 3679-3687.
    Panke S, Held M, Wubbolts M. 2004. “Trends and innovations in industrial biocatalysis for the production of fine chemicals”, Curr Opin Biotechnol 15: 272–279.
    Pasquier C, Naili S, Pelinski L, Brocard J, Mortreux A, Agbosson A. 1998. “Synthesis and application in enantioselective hydrogenation of new free and chromium complexed aminophosphine-phosphinite ligands”, Tetrahedron: Asymmetry 9: 193-196.
    Pham VT, Phillips RS. 1990. “Effects of substrate structure and temperature on the stereospecificity of secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus”, J Am Chem Soc 112: 3629-3632.
    Phillips DC. 1967. “The Hen-Egg-White Lysozyme Molecule”, Proc Natl Acad Sci USA 57: 484–495.
    Phillips RS. 1996. “Temperature modulation of the stereochemistry of enzymatic catalysis: Prospects for exploitation”, Trends Biotechnol 14: 13-16.
    Pollard D, Truppo M, Pollard J, Chen CY, Moore J. 2006. “Effective synthesis of (S)-3,5-bistrifluoromethylphenyl ethanol by asymmetric enzymatic reduction”, Tetradedron Asymm 17: 554–559.
    Pollard DJ and Woodley JM. 2006. “Biocatalysis for pharmaceutical intermediates: the future is now”, Trends in biotechnology 25: 66-73.
    Ragnitz K, Pietzsch M, Syldatk C. 2001. “Immobilization of the hydantoin cleaving enzymes from Arthrobacter aurescens DSM 3747”, J Biotechnol 92: 179-186.
    Reetz MT, Becker MH, Kuhling KM, Holzwarth A. 1998. “Time-Resolved IR-Thermographic Detection and Screening of Enantioselectivity in Catalytic Reactions”, Angew Chem Int Ed Engl 37: 2647-2650.
    Reetz MT, Zonta A, Schimossek K, Liebeton K, Jaeger KE. 1997. “Creation of Enantioselective Biocatalysts for Organic Chemistry by In Vitro Evolution”, Angew Chem Int Ed Engl 36: 2830-2832.
    Reetz MT. 2001. “Combinatorial and evolution-based methods in the creation of enantioselective catalysts”, Angew Chem Int Ed 40:284-310.
    Ross NW, Schneider H. 1991. “Activities of Candida rugosa lipase and other esterolytic enzymes coated on glass beads and suspended in substrate and water vapor: Enzymes in thin liquid films”, Enzyme Microb Technol 13: 370-377.
    Roth BD. 2002. “The discovery and development of Atorvastatin, a potent novel hypolipidemic agent”, Prog Med Chem 40: 1-22.
    Rouhi AM. 2004. “Chiral chemistry”, Chem Eng News 82: 47-62.
    Santaniello E, Ferraboschi P, Grisenti P, Manzocchi A. 1992. “The biocatalytic approach to the preparation of enantiomerically pure chiral building block”, Chem Rev 92: 1071-1140.
    Saudagar PS, Singhal RS. 2004. “Curdlan as a support matrix for immobilization of enzyme”, Carbohydr Polym 56: 483-488.
    Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B. 2001. “Industrial biocatalysis today and tomorrow”, Nature 409: 258-268.
    Schmid A, Hollmann F, Park JB, Bhler B. 2002. “The use of enzymes in the chemical industry in Europe”, Curr Opin Biotechnol 13: 359-366.
    Schoffers E, Golebiowski A, Johnson CR. 1996. “Enantioselective Synthesis Through Enzymatic Asymmetrization”, Tetrahedron 52: 3769-3826.
    Seip JE, Faber SK, Gavagan DL, Anton RC. 1994. “Glyoxylic acid purification using immobilized glycolate oxidase and catalase”, Bioorg Med Chem 2: 371-378.
    Sheldon RA. 1993. “Chirotechnology”, Marcel Dekker, New York.
    Shuler ML, Kargi F. 1992. “Bioprocess engineering basic concepts”, Englewood cliffs, New Jersey.
    Stinson SC. 1998. “Counting on chiral drugs”, Chem Eng News 76: 83-104.
    Stinson SC. 2000. “Chiral drugs”, Chem Eng News 78: 55-78.
    Straathof AJJ, Jongejan. 1997. “The enantiomeric ratio: origin, determination and prediction”, Enzyme Microb Technol 21: 559-571.
    Sumner JB. 1926. “The Isolation and Crystallization of the Enzyme Urease”, J Biol Chem 69: 435-441.
    Surivet JP, Vatle JM. 1998. “First total synthesis of (−)-8-epi-9-deoxygoniopypyrone”, Tetrahedron Letters 39: 9681-9682.
    Sutton LD, Quinn DM. 1990. “Modulation by organic cosolvent of microscopic compositions of virtual transition states in the acylation stage of cholesterol esterase catalyzed hydrolysis of short-chain p-nitrophenyl esters”, J Am Chem Soc 112: 8404-8408.
    Takakaza E, Tamura K.1993. “Process for producing R(−)mandelic acid and derivatives thereof”, EP 0449648.
    Tiana Z, Chen S, Zhang Y, Huang M, Shi L, Huang F, Fong C, Yang C, Xiao P. 2006. “The cytotoxicity of naturally occurring styryl lactones” Phytomedicine 13: 181-186
    Tischer W, Kasche V. 1999. “Immobilized enzymes: crystals or carriers?”, Trends in Biotechnology 17: 326-335.
    Tischer W, Wedekind F. 1999. “Immobilized enzymes: Methods and applications”, Biocatalysis - from Discovery to Application 200: 95-126.
    Tiyunko U, Kensaku U, Machiko S, Tsshiharu K, Yoshinaga T. 1994. “New ester hydrolases A and its production”, JP 6014772.
    Torres-Bacete J, Arroyo M, Torres-Guzman R, de la Mata I, Castillon MP, Acebal C. 2000. “Optimization of 6-aminopenicillanic acid (6-APA) production by using a new immobilized penicillin acylase”, Biotechnol Appl Biochem 32:173–177.
    Toshihara H, Hidetoshi N. 2002. “Method for producing optically active o-chloromandelic acid”, JP 2002114737.
    Tsai SW, Chen CC, Yang HS, Ng IS, Chen TL. 2006. “Implication of substrate-assisted catalysis on improving lipase activity or enantioselectivity in organic solvents”, BBA Protein and Proteomics 1764: 1424-1428.
    Turner NJ. 2003. “Controlling chirality”, Curr Opin Biotechnol 14: 401-406.
    van Langer LM, Selassa RP, van Rantwijk F, Sheldon RA. 2005. “Cross-linked aggregates of (R)-oxynitrilase: a stable, recyclable biocatalyst for enantioselective hydrocyanation”, Org Lett 7:327–9.
    van Langer LM, van Rantwijk K, Sheldon RA. 2003. “Enzymatic hydrocyanation of a sterically hindered aldehyde, optimization of a chemoenzymatic procedure for (R)-2-chloromandelic acid”, Org Process Res Dev 7: 828-831.
    Vilenchik LZ, Griffith JP, St Clair N, Navia MA, Margolin AL. 1998. “Protein Crystals as Novel Microporous Materials”, J Am Chem Soc 120: 4290-4294.
    Wen WY, Ng IS, Tsai SW. 2006. “Lipase-catalyzed dynamic hydrolytic resolution of (R,S)-2,2,2-trifluoroethyl -chlorophenyl acetate in water-saturated isooctane”, J Chem Technol Biotechnol 81: 1715-1721.
    Wendhausen R, Moran PJS, Joekes I, Rodrigues JAR. 1998. “Continuous process for large-scale preparation of chiral alcohols with baker’s yeast immobilized on chrysotile fibers”, J Mol Catal B: Enzyme 5: 69-73.
    Wong CH, Whitesides GM. 1994. “Enzymes in Synthetic Organic Chemistry”, Pergamon: Oxford.
    Xu K, Klibanov AM. 1996. “pH Control of the Catalytic Activity of Cross-Linked Enzyme Crystals in Organic Solvents”, J Am Chem Soc 118: 9815-9819.
    Yadav GD, Sivakumar P. 2004. “Enzyme-catalysed optical resolution of mandelic acid via (R,S)-methyl mandelate in non-aqueous media”, Biochem Eng J 19: 101-107.
    Yuan R, Watanabe S, Kuwabata S, Yoneyama H. 1997. “Asymmetric electroreduction of ketone and aldehyde derivatives to the corresponding alcohols using alcohol dehydrogenase as an electrocatalyst”, J Org Chem 62: 2494-2499.
    Zaks A, Klibanov AM. 1998. “Enzymatic catalysis in nonaqueous solvents”, J Biol Chem 263: 3194-3201.
    Zelinski T, Waldmann H. 1997. “Cross-Linked Enzyme Crystals (CLECs): Efficient and Stable Biocatalysts for Preparative Organic Chemistry”, Angew Chem Int Ed Engl 36: 722-724.
    Zheng L, Zhang S, Zhao L, Zhu G, Yang X, Cao G, Cao S. 2006. “Resolution of N-(2-ethyl-6-methylphenyl)alanine via free and immobilized lipase from Pseudomonas cepacia”, J Mol Cat B: Enzym 38: 119-125.
    Zuffi G, Ghisotti D, Oliva I, Capra E, Frascotti G, Tonon G, Orsini G. 2004. “Immobilized biocatalysts for the production of nucleosides and nucleoside analogues by enzymatic transglycosylation reactions”, Biocatal Biotrans 22: 221-224.

    下載圖示 校內:2008-05-29公開
    校外:2010-05-29公開
    QR CODE