簡易檢索 / 詳目顯示

研究生: 魏志超
Wei, Chih-Chao
論文名稱: 適用於變壓器匝間短路監測之無線資料傳輸及物聯網整合應用研製
Integration of Wireless Data Transfer and Internet-of-Things for Monitoring of Short-Turns in Transformers
指導教授: 黃世杰
Huang, Shyh-Jier
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 73
中文關鍵詞: 變壓器無線資料傳輸匝間短路檢測
外文關鍵詞: transformer, wireless data transfer, short-turn detection
相關次數: 點閱:86下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於變壓器使用數量龐大及運轉狀況不一,若僅以例行性維護,似無法全面確認變壓器運轉可靠度,故本論文研究提出應用無線資料傳輸及物聯網整合系統於變壓器匝間短路之監視及檢測,其中涵括資料取樣電路設計、無線資料傳輸、微控制器程式規劃及資料顯示視窗,並且輔以雲端資料庫將資料加以彙整,俾以提供工程人員遇到故障情形之輔助參考。本文於變壓器匝間短路檢測中,採用無線傳輸技術進行資料傳遞,有助於擴展監測範圍,同時輔以物聯網之協助,可加速掌握故障動態變化,進而提升變壓器供電效能。至為驗證本文所提之整合方法,本文已經由實際故障變壓器加以測試,測試結果應有助於佐證本文所提架構之可行性,研究成果並可擴展至電力設備故障預警功能之研發參考。

    With a large number of usages and their different operation scenarios, the operation reliability of transformers seems limited if the routine maintenance is solely conducted. Therefore, this thesis proposes to integrate the wireless data transfer with the internet-of-things for the monitoring and detection of short-turns in transformers, where the data-sampling circuit design, wireless data transmission, microcontroller programming, and data display window are all included. Moreover, the cloud database is used for the collection of history data in order to serve as the reference for engineers to handle encountered fault cases. In the process of transformer short-turn detection, the wireless data transfer technique is utilized to extend the range of monitoring. In the men time, with the assistance of internet-of-things, the dynamic variation of faults can be better grasped, hence increasing the performance of supplying-power of transformers. The method proposed in this thesis has been validated through the real faulted transformers. The test outcome confirms the feasibility of the proposed approach, which can be also extended to early warning of other electric power equipment.

    中文摘要 I 英文摘要 II 誌謝 V 目錄 VI 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究目的及文獻探討 2 1-3 研究方法與步驟 4 1-4 各章內容大綱簡述 5 第二章 物聯網及無線感測網路系統 6 2-1 前言 6 2-2 物聯網 6 2-2-1 物聯網基礎架構 7 2-2-2 物聯網之傳輸協定 9 2-2-3 物聯網發展 11 2-3 無線傳輸技術說明與分析 12 2-3-1 無線網路通訊範圍 12 2-3-2 網路拓樸 13 2-3-3 無線感測網路 16 2-4 ZigBee無線傳輸網路 20 2-4-1 ZigBee設備類型 20 2-4-2 ZigBee 通訊技術 21 2-4-3 ZigBee 協定 23 2-5 本章結論 25 第三章 變壓器故障模型及監測系統建立 26 3-1 前言 26 3-2 變壓器短路故障分析及匝間短路模型建立 26 3-2-1 變壓器故障原因分析 27 3-2-2 變壓器運轉及匝間短路模型介紹 28 3-2-3 變壓器匝間短路數學模型建立 30 3-3 監測系統初始設計 32 3-3-1 監測系統之微控制器介紹 33 3-3-2 XBee傳輸模組介紹 34 3-3-3 資料取樣電路設計 35 3-3-4 監測系統架構說明 37 3-4 監測系統建立 39 3-5 本章結論 41 第四章 研究結果及討論 42 4-1 前言 42 4-2 即時監測系統 44 4-3 變壓器匝間短路之低壓測試波形實測 45 4-4 變壓器匝間短路之市電測試波形實測 51 4-5 本章結論 63 第五章 結論與未來研究方向 64 5-1 結論 64 5-2 未來研究方向 65 參考文獻 66

    [1] J. C. Olivares-Galvan, R. Escarela-Perez, D. Guillén, J. A. Á. González, J. C. Jacobo, and F. P. Espino-Cortés, “Detection of Interturn Faults During Transformer Energization Using Wavelet Transform,” International Autumn Meeting on Power, Electronics and Computing, Ixtapa, Mexico, pp. 1-5, November 2016.
    [2] K. L. Butler-Purry, M. Bagriyanik, M. J. Mousavi, and P. Palmer-Buckle, “Experimental Investigation of Tnternal Short Circuit Faults Leading to Advanced Incipient Behavior and Failure of a Distribution Transformer,” Power Systems Conference and Exposition, New York, USA, pp. 1407-1416, October 2004.
    [3] N. Asadi and H. M. Kelk, “Modeling, Analysis, and Detection of Internal Winding Faults in Power Transformers,” IEEE Transations on Power Delivery, Vol. 30, No. 6, pp. 2419-2426, December 2015.
    [4] S. Bhowmick and S. Nandi, “Online Detection of an Interturn Winding Fault in Single-Phase Distribution Transformers Using a Terminal Measurement-Based Modeling Technique,” IEEE Transactions on Power Delivery, Vol. 30, No. 2, pp. 1007-1015, March 2015.
    [5] A. Vahedi and V. Behjat, “Online Monitoring of Power Transformers for Detection of Internal Winding Short Circuit Faults Using Negative Sequence Analysis,” European Transactions on Electrical Power, Vol. 21, No. 1, pp. 196-211, January 2011.
    [6] IEEE Std C37.91–2000, “IEEE Guide for Protective Relay Applications to Power Transformers,” October 2000.
    [7] IEEE Std C57.91-2011, “IEEE Guide for Loading Mineral-Oil-Immersed Transformers and Step-voltage Regulators,” March 2012.
    [8] V. Behjat and A. Vahedi, “An Experimental Approach for Investigating Low-level Interturn Winding Faults in Power Transformers,” Electrical Engineering, Vol. 95, No. 2, pp. 135–145, June. 2013.
    [9] J. Faiz, J. Gharaeei, and S. Lotfifard, “Detection, Location, and Estimation of Severity of Interturn Faults in Power Transformers,” International Conference on Compatibility, Power Electronics and Power Engineering, Bydgoszcz, Poland, pp. 39-44, August 2016.
    [10] P. A. Venikar, M. S. Ballal, B. S. Umre, and H. M. Suryawanshi, “A Novel Offline to Online Approach to Detect Transformer Interturn Fault,” IEEE Transactions on Power Delivery, Vol. 31, No. 2, pp. 482-492, April 2016.
    [11] T. Župan, B. Trkulja, R. Obrist, T. Franz, B. Cranganu-Cretu, and J. Smajic, “Transformer Windings’ RLC Parameters Calculation and Lightning Impulse Voltage Distribution Simulation,” IEEE Transactions on Magnetics, Vol. 52, No. 3, pp. 1-4, March 2016.
    [12] H. Afkar and A. Vahedi, “Detecting and Locating Turn to Turn Fault on Layer Winding of Distribution Transformer,” Conference on Thermal Power Plants, Tehran, Iran, pp. 109-116, June 2014.
    [13] I. B. M. Taha, D. A. Mansour, S. S. M. Ghoneim, and N. I. Elkalashy, “Conditional Probability-Based Interpretation of Dissolved Gas Analysis for Transformer Incipient Faults,” IET Generation, Transmission and Distribution, Vol. 11, No. 4, pp. 943-951, October 2016.
    [14] P. K. Dagadkar and C. V. Honade, “Monitoring of Power Transformer Incipient Fault,” International Journal for Innovative Research in Science & Technology, Vol. 2, Iss. 3, pp. 187-189, August 2015.
    [15] M. Noori, R. Effatnejad, and P. Hajihosseini, “Using Dissolved Gas Analysis Results to Detect and Isolate the Internal Faults of Power Transformers by Applying a Fuzzy Logic Method,” IET Generation, Transmission & Distribution, Vol. 11, No. 10, pp. 2721-2729, March 2017.
    [16] Z. Sahri, R. Yusof, and J. Watada, “FINNIM: Iterative Imputation of Missing Values in Dissolved Gas Analysis Dataset,” IEEE Transactions on Industrial Informatics, Vol. 10, No. 4, pp. 2093 -2102, November 2014.
    [17] T. Hayder, U. Schaerli, K. Feser, and L. Schiel, “Universal Adaptive Differential Protection for Regulating Transformers,” IEEE Transactions on Power Delivery, Vol. 23, No. 2, pp. 568-575, April 2008.
    [18] H. Dashti and M. Sanaye-Pasand, “Power Transformer Protection Using a Multi-region Adaptive Differential Relay,” IEEE Transactions on Power Delivery, Vol. 29, No. 2, pp. 777-785, April 2014.
    [19] J. Dai, Z. D. Wang, and P. Jarman, “Creepage Discharge on Insulation Barriers in Aged Power Transformers,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 17, No. 4, pp. 1327-1335, August 2010.
    [20] H. R. Mirzaei, A. Akbari, E. Gockenbach, and K. Miralikhani, “Advancing New Techniques for UHF PD Detection and Localization in the Power Transformers in the Factory Tests,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 22, No. 1, pp. 448-455, February 2015.
    [21] S. M. A. Cruz and A. J. M. Cardoso, “Multiple Reference Frames Theory: A New Method for the Diagnosis of Stator Faults in Three-Phase Induction Motors,” IEEE Transactions on Energy Conversion, Vol. 20, No. 3, pp. 611-619, Septemer 2005.
    [22] A. S. Masoum, N. Hashemnia, A. Abu-Siada, M. A.S. Masoum, and S. Islam, “Performance Evaluation of Online Transformer Winding Short Circuit Fault Detection Based on Instantaneous Voltage and Current Measurements,” IEEE PES General Meeting | Conference & Exposition, Maryland, USA, pp. 1-5, July 2014.
    [23] A. Abu-Siada and S. Islam, “A Novel Online Technique to Detect Power Transformer Winding Faults,” IEEE Transactions on Power Delivery, Vol. 27, No. 2, pp. 849-857, April 2012.
    [24] K. Padmanabh, “Load Forecasting in India at Distribution Transformer considering Economic Dynamics,” International Conference on Advances in Computing, Communications and Informatics, Jaipur, India, pp. 417-423, September 2016.
    [25] M. J. Singh, P. Agarwal, and K. Padmanabh, “Load Forecasting at Distribution Transformer using IoT based Smart Meter Data from 6000 Irish Homes,” International Conference on Contemporary Computing and Informatics, Noida, India, pp. 758-763, December 2016.
    [26] R. Minerva, A. Biru, and D. Rotondi, “Towards a Definition of the Internet of Things (IoT),” IEEE Internet of Things, May 2015.
    [27] V. Aleksandrovičs, E. Filičevs, and J. Kampars, “Internet of Things: Structure, Features and Management,” Information Technology and Management Science, Vol. 19, No. 1, pp. 78-84, December 2016.
    [28] P. Sethi and S. R. Sarangi, “Internet of Things: Architectures, Protocols, and Applications,” Journal of Electrical and Computer Engineering, Vol. 2017, pp. 1-25, January 2017.
    [29] IEEE Std. P2413, “Standard for an Architectural Framework for the Internet of Things (IoT),” September 2016
    [30] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE Communications Surveys & Tutorials, Vol. 17, No. 4, pp. 2347-2376, June 2015.
    [31] M. R. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. A. Grieco, G. Boggia, and M. Dohler, “Standardized Protocol Stack for the Internet of (Important) Things,” IEEE Communications Surveys & Tutorials , Vol. 15, No. 3, pp. 1389-1406, December 2012.
    [32] C. Bormann, A. P. Castellani, and Z. Shelby, “CoAP: An Application Protocol for Billions of Tiny Internet Nodes,” IEEE Internet Computing, Vol. 16, No. 2, pp. 62-67, March 2012.
    [33] RFID Working Group of The European Technology Platform on Smart Systems Integration, “Internet of Things in 2020 A Roadmap for The Future,” September 2008.
    [34] Gartner, “Leading the IoT,” [Online] Available: http://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf
    [35] S. Krco, B. Pokric, and F. Carrez, “Designing IoT Architecture(s): A European Perspective,” IEEE World Forum on Internet of Things (WF-IoT), Seoul, South Korea, pp. 79-84, March 2014.
    [36] S. Kraijak and P. Tuwanut, “A Survey on IoT Architectures, Protocols, Applications, Security, Privacy, Real-world Implementation and Future Trends,” International Conference on Wireless Communications, Networking and Mobile Computing, Shanghai, China, pp. 1-6, September 2015.
    [37] T. Hiramoto, K. Takeuchi, T. Mizutani, A. Ueda, T. SarayaI, M. KobayashiI, Y. Yamamoto, H. Makiyama, T. Yamashita, H. Oda, S. Kamohara, N. Sugii, and Y. Yamaguchi, “Ultra-Low Power and Ultra-Low Voltage Devices and Circuits for loT Applications,” IEEE Silicon Nanoelectronics Workshop, Honolulu, USA, pp. 1-2, June 2016.
    [38] N. Shafiee, S. Tewari, B. Calhoun, and A. Shrivastava, “Infrastructure Circuits for Lifetime Improvement of Ultra-Low Power IoT Devices,” IEEE Transactions on Circuits and Systems–I: Regular Papers, Vol. 64, No. 9, pp. 2598-2610, May 2017.
    [39] T. Wan, E. Salman, and M. Stanacevic, “A New Circuit Design Framework for IoT Devices: Charge-Recycling with Wireless Power Harvesting,” International Symposium on Circuits and Systems, Montreal, Canada, pp. 2046-2049, May 2016.
    [40] Y. Y. Yang, C. Wang, and J. Li, “Wireless Rechargeable Sensor Networks - Current Status and Future Trends,” Journal of Communications, Vol. 10, No. 9, pp. 696-706, September 2015.
    [41] J. M. C. Brito, “Trends in Wireless Communications Towards 5G Networks – The Influence of E-health and IoT Applications,” International Multidisciplinary Conference on Computer and Energy Science, Split, Croatia, pp. 1-7, July 2016.
    [42] L. Wei, Q. Y. HU, Y. Qian, and G. Wu, “Key Elements to Enable Millimeter Wave Communications for 5G Wireless Systems,” IEEE Wireless Communications, Vol 21, No. 6, pp. 136-143, December 2014.
    [43] M. Radovan and B. Golub, “Trends in IoT Security,” Information and Communication Technology, Electronics and Microelectronic, Opatija, Croatia, pp. 1302-1308, May 2017.
    [44] IEC Publication, “Internet of Things: Wireless Sensor Networks,” July 2014.
    [45] U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low Power Wide Area Networks: An Overview,” IEEE Communications Surveys & Tutorials, Vol. 19, No. 2, pp. 855-873, January 2017.
    [46] IEEE Std. 802.15.4, “IEEE Standard forWireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LRWPANs),” June 2011.
    [47] M. Franceschinis, C. Pastrone, M. A. Spirito, and C. Borean, “On the Performance of ZigBee Pro and ZigBee IP in IEEE 802.15.4 Networks,” International Conference on Wireless and Mobile Computing, Networking and Communications, Lyon, France, pp. 83-88, November 2013.
    [48] M. S. Afaqui, E. Garcia-Villegas, and E. Lopez-Aguilera, “IEEE 802.11ax: Challenges and Requirements for Future High Efficiency WiFi,” IEEE Wireless Communications, Vol. 24, No. 3, pp. 130-137, December 2016.
    [49] R. Want, B. Schilit, and D. Laskowski, “Bluetooth LE Finds Its Niche,” IEEE Pervasive Computing, Vol. 12, No. 4, pp. 12-16, October 2013.
    [50] R. Want, “Near Field Communication,” IEEE Pervasive Computing, Vol. 10, No. 3, pp. 4-7, July 2011.
    [51] N. Sornin, M. Luis, T. Eirich, T. Kramp, and O. Hersent, LoRaWAN Specifications, LoRa Alliance, San Ramon, CA, USA, 2015.
    [52] Sigfox, May 2016, [Online] Available: http://www.sigfox.com/
    [53] NXP Semiconductors Publication, “ZigBee 3.0–Facilitating the Internet of Things,” August 2016.
    [54] R. S. Bhide, M. S. S. Srinivas, and I. Voloh, “Detection of Inter-Turn Fault in Transformers at Incipient Level,” International Conference on Electrical Machines, Berlin, Germany, pp. 1542-1548, September 2014.
    [55] S. T. Jan, R. Afzal, and A. Z. Khan, “Transformer Failures, Causes & Impact,” International Conference Data Mining, Civil and Mechanical Engineering, Bali, Indonesia, pp. 49-52, February 2015.
    [56] E. Mechkov, “Application of Infrared Thermography Technique in Transformers Maintenance in Distribution Network,” International conference on Electrical Machines, Drives and Power Systems, Sofia, Bulgaria, pp. 354-357, June 2017.
    [57] S. Zama, T. Kobayashi, J. Ikeda, and A. Eto, “Improvement for Diagnosing Internal Abnormalities in Oil-Filled Transformers,” International conference on Condition Monitoring and Diagnosis, Beijing, China, pp. 1-4, April 2008.

    [58] A. Berzoy, A. A. S. Mohamed, and O. A. Mohammed, “Inter-Turn Short-Circuit Fault Model for Magnetically Coupled Circuits: A General Study,” Industry Applications Society Annual Meeting, Portland, USA, pp.1-7, October 2016.
    [59] A. Ehsanifar, M. Dehghani, and M. allahbakhshi, “Calculating the Leakage Inductance for Transformer Inter-Turn Fault Detection Using Finite Element Method,” Iranian Conference on Electrical Engineering, Tehran, Iran, pp. 1372-1377, May 2017.
    [60] A. Subramaniam, S. Bhandari, M. Bagheri, N. Sivakumar, A. K. Gupta, and S. K. Panda, “Online Condition Monitoring and Diagnosis Techniques for Dry Type Transformers,” IEEE Conference and Expo Transportation Electrification Asia-Pacific, Busan, South Korea, pp. 24-28, June 2016.
    [61] 艾本‧厄普頓,蓋瑞斯‧哈菲克,曾吉弘譯,Raspberry 使用者手冊,馥林文化,台北市,2013年8月。
    [62] XBee/XBee-PRO S2C ZigBee RF Module User Guide, Digi International, December 2015.
    [63] TL494 Data Sheet, Texas Instruments Incorporated, March 2017.
    [64] Ubidots: IoT platform | Internet of Things, [Online] Available: https://ubidots.com/

    下載圖示
    2023-01-10公開
    QR CODE