研究生: |
山田真弘 Yamada, Masahiro |
---|---|
論文名稱: |
具雙眼攝影機與全方位攝影機之自主式移動機器人於障礙物迴避與目標物追蹤之研究 Study on Obstacle Avoidance and Target Tracking for An Autonomous Mobile Robot Equipped with a Stereo Camera and an Omni Directional Camera |
指導教授: |
鄭銘揚
Cheng, Ming-Yang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 53 |
中文關鍵詞: | 深度圖 、障礙物迴避 、階層性的構造 、目標追隨 |
外文關鍵詞: | Hierarchical Architecture, Self Windowing, Target Tracking, U-V-Disparity, Depth Image, Obstacle Avoidance |
相關次數: | 點閱:107 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一套階層式之切換策略,讓移動機器人能夠自動地偵測場景中的障礙物並追蹤特定目標物。首先,透過雙眼攝影機求得一連串含有深度資訊之影像,並利用「V-Disparity」來建立一個障礙物地圖。接著,利用目標物色彩資訊及「Self Windowing」之方法來進行目標物追蹤,同時也以階層式架構之切換策略來決定移動中的機器人必須進行障礙物迴避或是目標物追蹤。實驗結果顯示本論文所提出的方法效果良好,並具有可行性。
This thesis proposes a hierarchical switching strategy for a mobile robot to detect obstacles and to track a given target. In the proposed approach, the depth image obtained from a stereo camera is used to build an obstacle map based on V-Disparity. Color information and a Self Windowing technique are employed to track the target. A switching strategy based on a hierarchical architecture is employed to determine whether the mobile robot should perform obstacle avoidance or target tracking. To verify the effectiveness of the proposed approach, several experiments were conducted. The results indicate that the proposed approach is feasible.
[1] Wikipedia, the free encyclopedia, “ロボット,” http://ja.wikipedia.org/wiki/%E3%83%AD%E3%83%9C%E3%83%83%E3%83%88
[2] Wikipedia, the free encyclopedia, “Robot,” http://en.wikipedia.org/wiki/Robot
[3] Wikipedia, the free encyclopedia, “George Devol,” http://en.wikipedia.org/ wiki/George_Devol
[4] M. Egerstedt, and X. Hu, “A hybrid control approach to action coordination for mobile robots,” Automatica, vol. 38, pp. 125-130, 2002.
[5] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Constrained model predictive control: Stability and optimality,” Automatica, vol. 36, pp. 789-814, 2000.
[6] H. Fukushima, K. Kon, and F. Matsuno, “Distributed model predictive control for multi-vehicle formation with collision avoidance constraints,” in Proceedings of the IEEE International Conference on Decision and Control, and the European Control Conference, pp. 5480-5485, 2005.
[7] J. L. Fernandez, R. Sanz, J. A. Benayas, and A. R. Dieguez, “Improving collision avoidance for mobile robots in partially known environments: the beam curvature method,” Robotics and Autonomous Systems, vol. 46, pp. 205-219, 2004.
[8] X. Jing, “Behavior dynamics based motion planning of mobile robots uncertain dynamic environments,” Robotics and Autonomous Systems, vol. 53, pp. 99-123, 2005.
[9] B. D. O. Anderson, C. Yu, and J. M. Hendrickx, “Use of meta-formations for cooperative control,” in Proceedings of the 17th International Symposium Mathematical Theory of Networks and Systems, pp. 2381-2387, 2006.
[10] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont, L.E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. van Niekerk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Nefian, and P. Mahoney, “Stanley, the robot that won the DARPA Grand Challenge,” Journal of Field Robotics, vol. 23, pp. 661-669, 2006.
[11] G. N. DeSouza, and A. C. Kak “A Subsumptive, Hierarchical, and Distributed Vision-Based Architecture for Smart Robotics,” IEEE Transaction on System, Men, and Cybernetics, vol. 34, no. 5, pp. 1988-2002, 2004.
[12] D. Schrstein, and R. Szeliski, “Stereo matching with non-liner diffusion,” International Journal of Computer Vision, vol.28, no.2, pp.155-174, 1998.
[13] T. Kanade, and M. Okutomi, “A stereo matching algorithm with an adaptive window; Theory and experiment,” in Proceedings of the IEEE International Conference on Robotic and Auteomation, pp. 1008-1095, April 1991.
[14] S. D. Ma, “Conic-based stereo, mation estimation, and pose determination,” International Journal of Computer Vision, vol.10, no.1, pp. 7-25, 1993.
[15] R. Mahan, and R. Nevatia, “Using perceptual organization to extract 3-D structure,” IEEE Transaction on Pattern Analysis and Machine Intelligence, vol.11, no.11, pp.1121-1139, 1989.
[16] L. Robert, and O. D. Faugeras, “Curve-based stereo: Figural continuity and curvature,” in Proceedings of the Computer Vision and Pattern Recognition, pp. 57-62, 1991.
[17] M. Bertozzi, A. Broggi, A. Fascioli, and S. Nichele, “Stereo Vision based Vehicle Detection,” in Proceedings of the IEEE Intelligent Vehicle Symposium, pp. 39-44, 2000.
[18] A.Talukder, R. Manduchi, A. Rankin, and L. Matthies, “Fast and Reliable Obstacle Detection and Segmentation for Cross-country Navigation,” in Proceeding of the IEEE Intelligent Vehicles Symposium, vol.2, pp. 610-618, 2002.
[19] Y. Raja, S. J. MaKenna, and S. Gong “Colour Model Selection and Adaptation in Dynamic Scenes,” in Proceedings of the European Conference of Computer Vision, pp. 460-474, 1998.
[20] Z. Jia, A. Balasuriya, and S. Challa “Target Tracking with Bayesian Fusion Based Template Matching,” in Proceedings of the IEEE International Conference on Image Processing, vol. 2, pp. 826-829, 2005.
[21] R. Labayrade, D. Aubert, and J.P. Tarel, “Real Time Obstacle Detection in Stereovision on Non Flat Road Geometry Through "V-disparity" Representation,” in Proceedings of the IEEE Intelligent Vehicle Symposium, vol. 2, pp. 646-521, 2002.
[22] R. Labayrade, and D.Aubm, “In-Vehicle Obstacle Detection and Characterization by Stereo-Video,” in Proceedings of the International Workshop on In-Vehicle Cognitive Computer Vision System, pp. 13-19, 2003.
[23] I. Ishii, Y. Ndcabo, and M. Ishilrawa, ”Target Tracking Algorithm for lms Visual Feedback System Using Massively Parallel Processing,” in Proceedings of the IEEE International Conference on Robotics and Automation Minneapolis, vol. 3, pp. 2309-2317,1996