簡易檢索 / 詳目顯示

研究生: 謝哲偉
Xie, Zhe-Wei
論文名稱: 0.9Li2MgTi3O8-0.1Li2ZnTi3O8介電陶瓷及微波應用
Microwave Dielectric Properties and Microwave Applications of 0.9Li2MgTi3O8-0.1Li2ZnTi3O8 Dielectric Ceramics
指導教授: 李炳鈞
Li, Bing-Jing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 87
中文關鍵詞: 介電陶瓷
外文關鍵詞: Li2MgTi3O8
相關次數: 點閱:66下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文討論0.9Li2MgTi3O8-0.1Li2ZnTi3O8介電陶瓷,於1070℃燒結、時間4小時,其介電特性為 約26.5, 約61200(8.21GHz), 約0.8(ppm/℃)。藉由添加不同燒結促進劑,探討產生的液相對其微波特性的影響。實驗結果顯示,添加0.5wt%的CuO可降低燒結溫度到980℃,此時可得介電特性 約27.98, 約32559 (8.53GHz), 約-1.31 (ppm/℃),添加1wt%的V2O5可降低燒結溫度到980℃,此時可得介電特性 約29.12, 約31108 (8.66GHz), 約0.35 (ppm/℃)。另外,本論文以0.9Li2MgTi3O8-0.1Li2ZnTi3O8添加0.5wt%的CuO為基板,製作 一個雙模態帶通態濾波器,實作量測中心頻率為2.32(GHz)、頻寬為67.3%、插入損耗為1.7(dB)和返回損耗為20(dB),且面積為FR4基板25%,證明本基板可應用於WIFI、藍芽、家用無線電話。

    The microwave dielectric properties of the ceramic 0.9Li2MgTi3O8-0.1Li2ZnTi3O8 system were investigated in this thesis. Under the condition of sintering temperature of 1070℃ and sintering time of 4 hours, the ceramic dielectric had the properties of 26.5 for , 61200 GHz (measured at 8.21GHz) for and 0.8 ppm/℃ for . By adding 0.5wt% CuO, the sintering temperature of 0.9Li2MgTi3O8-0.1Li2ZnTi3O8 was lowered to 980℃ with the microwaves properties of 27.98 for , 32559 GHz for and -1.31ppm/℃ for . By adding 1wt% V2O5, the sintering temperature was lowered to 980℃ with the microwaves properties of 29.12 for , 31108 GHz for and 0.35ppm/℃ for . A dual-mode bandpass was made on the substrate of 0.9Li2MgTi3O8-0.1Li2ZnTi3O8 with aid of CuO. The measured results showed the center frequency was 2.32 GHz, fractional bandwidth 67.3%, insertion loss 1.7 dB and return loss 20 dB. The area of the filter was 75% less than that made on FR4. This work demonstrated 0.9Li2MgTi3O8-0.1Li2ZnTi3O8 with the aid of CuO had excellent microwave properties.

    目錄 目錄…………………………………………………………………………………..V 圖目錄…….……………………………………………...…………………..……VII 表目錄……………………………………………………………………………...IX 第一章 緒論 1 1-1 研究動機 1 1-2 研究目的與方法 1 第二章 介電材料原理 3 2-1 介電材料的微波特性與理論 3 2-2 介電理論 4 2-3 介電共振器理論 6 2-4 介電共振器(Dielectric resonator,DR) 6 2-5 尖晶石結構 10 2-6 燒結理論 12 2-6-1 液相燒結 12 第三章 濾波器電路原理 14 3-1 濾波器簡介 14 3-2 微帶線的原理 15 3-2-1 微帶線的損失 15 3-2-2 微帶線各項參數公式 16 3-2-3 微帶線的不連續效應 17 3-2-4 微帶線傳輸組態 18 3-3 環狀共振器(Ring Resonators) 21 3-3-1 簡介 21 3-3-2 環狀共振器的頻率模態 21 3-3-3 輸入阻抗的計算 22 3-3-4 雙模態濾波器簡介 26 3-3-5 .雙模態帶通濾波器之分析 29 第四章 實驗程序 35 4-1 微波介電材料的製備 35 4-1-1 0.9Li2MgTi3O8-0.1Li2ZnTi3O8之製程 35 4-2 微波介電材料的量測與特性分析 36 4-2-1 X-Ray分析(XRD) 36 4-2-2 掃瞄式電子顯微鏡(SEM)分析 36 4-2-3 密度之量測 36 4-3 微波特性的量測 38 4-3-1 介電係數之量測 38 4-3-2 Qd值之測量 41 4-3-3 頻率溫度係數( )之測量 43 4-4 濾波器元件之製作與量測 45 4-4-1 濾波器設計 45 4-4-2 濾波器量測 46 第五章 實驗結果與討論 47 5-1 0.9Li2MgTi3O8-0.1Li2ZnTi3O8添加V2O5之探討 47 5-2 0.9Li2MgTi3O8-0.1Li2ZnTi3O8添加CuO之探討 62 5-3 使用FR4基板模擬與實做結果 76 5-4 使用Al2O3模擬與實做結果 78 5-5 使用自製基板模擬與實做結果 81 第六章 結論 84 參考文獻 86

    參考文獻…
    [1] S. George and M. T. Sebastian, "Microwave dielectric properties of novel temperature stable high Q Li2Mg1-xZnxTi3O8 and Li2A1-xCaxTi3O8 (A = Mg, Zn) ceramics," J. Eur. Ceram. Soc., vol. 30, pp. 2585-2592, 2010.
    [2] S. George and M. T. Sebastian, "Low-Temperature Sintering and Microwave Dielectric Properties of Li2ATi3O8 (A=Mg, Zn) Ceramics," Int. J. Appl. Ceram. Technol., pp. no-no, 2010.
    [3] D. Kajfez, "Computed model field distribution for isolated dielectric resonator-s," IEEE. Trans. Microwave Theory Tech, vol. MTT-32, pp. 1609-1616, 1984.
    [4] D. Kajfez, "Basic principle give understanding of dielectric waveguides and resonators," Microwave System News, vol. 13, pp. 152-161, 1983.
    [5] D. Kajfez and P. Guillon, "Dielectric resonators," New York: Artech House, 1989.
    [6] W. J. Huppmann and G. Petzow, "Sintering processes," New York: Plenum Pr-ess, pp. 189-202, 1979.
    [7] J. W. Cahn and R. B. Heady, "Analysis of capillary forces in liquid-phase s-intering of jagged particles," J. Am. Ceram. Soc, vol. 53, pp. 406-409, 1970.
    [8] 吳朗, "電工材料," 滄海書局, 87年2月.
    [9] A. M. GLAZER, Acta Cryst, vol. A31, p. 756, 1975.
    [10] A. Meden and M. Ceh, Material Science Forum 773, pp. 278-281, 1998.
    [11] E. J. Denlinger, "Losses of microstrip lines," IEEE Trans. Microwave Theory Tech, vol. MIT-28, pp. 513-522, Jun 1980.
    [12] R. A. Pucel, D. J. Masse, and C. E. Hartwig, "Losses in microstrip”, IEEE. Trans. Microwave Theory Tech," vol. MIT-16, pp, pp. 342-350, Jun 1968.
    [13] 蔡新通, "x(Mg0.95Zn0.05)TiO3-(1-x)Ca0.8Sm0.4/3TiO3 微波介電材料之研究與應用," 國立成功大學電機所, 2007.
    [14] R. A. Pucel, D. J. Masse, and C. E. Hartwig, "Losses in microstrip”, IEEE. Trans.Microwave Theory Tech," vol. MIT-16, pp. 342-350, Jun 1968.
    [15] 張盛富 and 戴明鳳, "無線通信之射頻被動電路設計," 全華出版社, 1998.
    [16] K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, "Microstrip lines and slotlines, second edition," Boston: Artech House, 1996.
    [17] G. L. Matthaei, L. Young, and E. M. T. Jones, "Microwave filters impedancematching networks and coupling structures," New York: McGraw-Hill, 1980.
    [18] V. Nalbandian and W. Steenart, "Discontinuity in symmetric striplines due to impedance step and their compensations," IEEE Trans. Microwave Theory Tech, vol. MTT-20, pp. 573-578, Sep 1980.
    [19] 翁敏航, "射頻被動元件設計," 東華書局, 2007.
    [20] 黃昱人, "低溫共燒陶瓷雙模態環型帶通濾波器與平衡器之設計," 國立中正大學電機工程研究所, 2005.
    [21] I. Wolff and N. Knoppik, "Microstrip resonator and dispersion measurements on microstrip lines," Electron Letter 7th, pp. 779-781, 1971.
    [22] M. Matsuo, H. Yabuki, and M. Makimoto, "Dual-mode stepped-impedance ring resonator for bandpass filter application," EEE Trans. Microwave Theory Tech, vol. 49, pp. 1235-1240, July 2001.
    [23] J. S. Hong and M. J. Lancaster, "Microstrip bandpass filter using degenerate modes of a novel mender loop resonator," IEEE Microwave and Guided Wave Letters, vol. 5, pp. 371-372, Nov. 1995.
    [24] A. Görür, "A Reduced-Size Dual-Mode Bandpass Filter With Capacitivity Loaded Open-Loop Arms," IEEE Microwave Wireless Comp.Lett., vol. 13, pp. 385-387, Sep. 2003.
    [25] D. Kajfez, "Computed model field distribution for isolated dielectric resonators," IEEE. Trans. Microwave Theory Tech, vol. MTT-32, pp. 1609-1616, Dec. 1984.
    [26] W. E. Courtney, "Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators," IEEE. Trans. Microwave Theory Tech, vol. MTT-18, pp. 476-485, 1970.
    [27] Y. Kobayashi and N. Katoh, "Microwave Measurement of Dielectric Properties of Low-loss Materials by Dielectric Rod Resonator Method," IEEE. Trans., vol. MTT-33, pp. 586-592, 1985.
    [28] O. V. Karpova, Soviet Phys, vol. 1, p. 220, 1959.
    [29] P. Wheless and D. Kajfez, "The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators," IEEE MTT-S, Symposium Dig, pp. 473-476, 1985.
    [30] B. W. Hakki and P. D. Coleman, "A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter range," IEEE Trans. MTT, vol. MTTS, pp. 402-410, 1960.
    [31] Y. Kobayashi and N. Katoh, "Microwave Measurement of Dielectric Properties of Low-loss Materials by Dielectric Rod Resonator Method," IEEE. Trans. MTT, vol. MTT-33, pp. 586-592, 1985.
    [32] B. W. Hakki and P. D. Coleman, "A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter range," IEEE Trans. MTT, vol. MTTS, pp. 402-410, 1960.

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE