簡易檢索 / 詳目顯示

研究生: 郭奕彬
Kuo, I-ping
論文名稱: 高介電常數有機/無機複合絕緣層有機薄膜電晶體製作與研究
Fabrication of Organic Thin-Film Transistors with High-k Organic-Inorganic Composite gate Dielectrics
指導教授: 李文熙
Lee, Wen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 82
中文關鍵詞: 有機薄膜電晶體五環素高介電常數高分子載子遷移率
外文關鍵詞: OTFT, pentacene, carrier mobility, High-k, polymer
相關次數: 點閱:76下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中首先嘗試製作且分析有機高分子絕緣層的平整度、漏電流、及介電常數,以期找出合適的絕緣層材料製作有機薄膜電晶體。分析後我們決定使用純PVP和純PI當作絕緣層材料,並且為了提高介電常數來幫助降低操作電壓,我們分別在PVP和PI兩種材料中摻雜適量的二氧化鈦奈米粉體,研究後發現此種有機/無機複合高分子材料的絕緣層單位面積電容皆上升,且介電常數可以提升10% ~ 26%。同時我們選擇以熱蒸鍍的方式成長五環素(pentacene)當做主動層,我們嘗試在四種絕緣層上改變蒸鍍速率及基板溫度成長主動層,實驗中我們利用XRD分析來計算各種情況下薄膜相與塊體相的比例,同時使用SEM或AFM來觀察晶粒大小及表面形貌。我們成功製作上接觸式元件和下接觸式元件此兩種結構的有機薄膜電晶體,最後可以發現在摻雜TiO2的絕緣層上製作的下接觸式元件,載子遷移率提升2~3倍,而上接觸式元件提升約2倍,PI+TiO2上可以獲得最佳的載子遷移率0.59 cm2/Vs,PVP+TiO2上載子遷移率0.53 cm2/Vs,而開關電流比和次臨界擺幅也獲得改善。

    We try to examine characteristics of the dielectric layer and fabricate organic thin-film transistors by evaporating pentacene onto two different neat polymer dielectrics: PVP, PI and two composite polymer dielectrics: PVP+TiO2, PI+TiO2. The composite polymer dielectric has been designed in view to combine low voltage operating devices, by the use of High-k TiO2 which increases the charge in the accumulation channel and the gate capacitance, and highly stable devices which generally could be achieved with polymer dielectrics. We find that TiO2 has a significant effect, with measured mobility in Bottom-contact device ranging from between 0.007 and 0.027 cm2/Vs and in Top-contact device ranging from between 0.28 and 0.59 cm2/Vs. This variation appears uncorrelated with either the polymer surface morphology or the observed grain size. The higher mobility of TC OTFT on polymer dielectric is attributed to the lower contact resistance. The distribution of mobility, threshold voltage, on/off ratio, and subthreshold swing observed for each of the polymer dielectrics is presented.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 續論 1 1-1 研究動機 1 1-2 研究方向 1 1-3 論文架構 2 第二章 有機薄膜電晶體介紹 3 2-1 有機薄膜電晶體簡介 3 2-2 薄膜電晶體概論 4 2-2-1 FET (Field-Effect Transistor) 4 2-2-2 TFT (Thin-Film Transistor) 8 2-2-3 OTFT (Organic Thin-Film Transistor) 9 2-3 有機薄膜電晶體參數 10 2-3-1 載子遷移率 (Carrier mobility) 10 2-3-2 臨界電壓 (Threshold voltage) 12 2-3-3 電流開關比 (on/off current ratio) 13 2-3-4 次臨界斜率 (Subthreshold Slope) 14 2-4 金屬與半導體界面接觸 15 2-5 有機半導體材料特性與電流傳輸機制 17 2-5-1 pentacene材料特性 17 2-5-2 pentacene分子結構 18 2-5-3 pentacene分子軌域與鍵結 20 2-5-4 Multiple Trapping and Release (MTR) 21 2-5-5 Hopping 21 第三章 有機/無機複合絕緣層 23 3-1 有機/無機複合材料 23 3-2 絕緣層材料 23 3-2-1 Polymer Gate Dielectric 23 3-2-2 Poly-(4-vinylphenol) 25 3-2-3 Polyimide 26 3-2-4 Dielectric Constant 27 第四章 實驗架構 31 4-1 實驗儀器 32 4-2 玻璃基板的準備 32 4-3 絕緣層的製作 32 4-3-1 實驗步驟 32 4-3-2 PVP+TiO2 / PI+TiO2複合絕緣層的製備 33 4-4 金屬電極的成長 33 4-5 有機半導體的成長 34 4-6 元件電性量測儀器 36 4-7 分析儀器 36 第五章 實驗結果與討論 38 5-1有機/無機複合絕緣層實驗分析 38 5-1-1 絕緣層膜特性與微結構分析 38 5-1-2 絕緣層膜電性分析 46 5-2 pentacene主動層分析 50 5-2-1 pentacene蒸鍍速率相分析 50 5-2-2 pentacene基板溫度相分析 54 5-2-3 pentacene在四種絕緣層上相分析 57 5-2-4 pentacene表面形貌分析 60 5-2-4-1 pentacene在純PVP改變蒸鍍速率的grain size 60 5-2-4-2 pentacene在純PI上改變蒸鍍速率的grain size 61 5-2-4-3 pentacene 在純PVP上改變基板溫度的grain size 63 5-2-4-4 pentacene在純PI上改變基板溫度的grain size 64 5-2-4-5 pentacene在四種絕緣層上的grain size 67 5-3 OTFT元件分析 70 5-3-1 Bottom-contact device 70 5-3-2 Top-contact device 71 第六章 總結 78 參考文獻 79

    [1]C. D. Dimitrakopoulos and D. J. Mascaroz, “Organic thin-film transistors: A review of recent advances” IBM J. RES. & DEV., Vol.45, No.1, (2001)
    [2]Adel. S. Sedra and Kenneth. C. Smith, Microelectronics Circuits, 5th ed., Oxford, (2003)
    [3]Gilles Horowitz, “Organic Field-Effect Transistors” Adv. Mater., No.5, 10, (1998)
    [4]Peter V. Necliudov, Michael S. Shur , David J. Gundlach, Thomas N. Jackson,
    ”Contact resistance extraction in pentacene thin film transistors” Solid-State Electronics, 47, pp.259-262, (2003)
    [5]Donald A. Neamen, Semiconductor Physics & Devices, 3rd ed., McGraw Hill, (2003)
    [6]N. Koch, A. Kahn, J. Ghijsen, J.-J. Pireaux, J. Schwartz, R. L. Johnson, and A. Elschner, “Conjugated organic molecules on metal versus polymer electrodes: Demonstration of a key energy level alignment mechanism” Appl. Phys. Lett., Vol.82, pp.70-73, (2003).
    [7]Frank-J. Meyer zu Heringdorf, M. C. Reuter & R. M. Tromp, “Growth dynamics of pentacene thin films” IBM T.J. Watson Research Center, Yorktown Heights, PO Box 218, New York 10598, USA
    [8]Sandra E. Fritz, Stephen M. Martin, C. Daniel Frisbie, Michael D. Ward,
    ”Structural Characterization of a Pentacene Monolayer on an Amorphous SiO2 Substrate with Grazing Incidence X-ray Diffraction” J. AM. CHEM. SOC. 9 Vol.126, No.13, (2004)
    [9]Iwao Yagi, Kazuhito Tsukagoshia, Yoshinobu Aoyagi, ”Growth control of pentacene films on SiO2/Si substrates towards formation of flat conduction layers” Thin Solid Films, 467, pp.168-171, (2004)
    [10]J. L. Brédaset al. “Electronic structure of π-conjugated oligomerand
    polymers : a quantum-chemical approach to transport properties.” Syn. Mat., 125, pp.107-116, (2002)
    [11]P. W. Anderson, “Absence of Diffusion in Certain Random Lattices” Physical Review, Vol.109, pp.1492-1505, (1958)
    [12]M. C. J. M. Vissenberg and M. Matters, “Theory of the field-effect mobility in amorphous organic transistors” Philips Research Laboratories, 5656 AA Eindhoven, The Netherlands Instituut-Lorentz, University of Leiden, 2300 RA Leiden, The Netherlands, (2006)
    [13]J. Takeya, C. Goldmann, S. Haas, K. P. Pernstich, B. Ketterer, and B. Batlogg, “Field-induced charge transport at the surface of pentacene single crystals: a method to study charge dynamics of 2D electron systems in organic crystals” Laboratory for Solid State Physics ETH, CH-8093 Z¨urich, Switzerland, (2006)
    [14]D. K. Hwang, Ji Hoon Park, Jiyoul Lee, Jeong-M. Choi, Jae Hoon Kim,” Improving Resistance to Gate Bias Stress in Pentacene TFTs with Optimally Cured Polymer Dielectric Layers” Journal of The Electrochemical Society, 153, pp.23-26, (2006)
    [15]Seungmoon Pyo, Yoonjeong Lee, Jihyun Jeon, and Mi Hye Yi, Soon-Ki Kwon, “Effect of a gate insulator with a long alkyl side chain on the performance of pentacene organic thin-film transistors” Journal of Applied Physics, 99, 073711, (2006)
    [16]Yan HU, Guifang DONG, Liduo WANG and Yong QIU, “Phototransistor Properties of Pentacene Organic Transistors with Poly(methyl methacrylate) Dielectric Layer” Japanese Journal of Applied Physics, Vol.45, No.3, pp.96-98, (2006)
    [17]Raoul Schroeder, Leszek A. Majewski, and Martin Grell, “Improving organic transistor performance with Schottky contacts” Appl. Phys. Lett., Vol.84, No.6, (2004)
    [18]Sung Hun Jin, Jae Sung Yu, Chun An Lee, Jin Wook Kim, “Pentacene OTFTs with PVA Gate Insulators on a Flexible Substrate” Journal of the Korean Physical Society, Vol.44, No.1, pp.181-184, (2004)
    [19]Kyunghee Choi, D. K. Hwang, Kimoon Lee, Jae Hoon Kim, and Seongil Im, ”Pentacene Thin-Film Transistors with Polymer/TiOx Double-Layer Dielectrics Operating at 3V” Electrochemical and Solid-State Letters, 10, pp.114-116, (2007)
    [20]A.L. Deman , J. Tardy, ” Stability of pentacene organic field effect transistors with a low-k polymer/high-k oxide two-layer gate dielectric” Materials Science and Engineering, pp.421-426, (2006)
    [21]S.J. Park, J.H. Sung, J.H. Park, H.J. Choi, ” Characteristics of poly(vinyl acetate)/organoclay as a gate insulating material in organic thin film transistor” Applied Physics, Vol.6, pp.636-639, (2006)
    [22]魏炯權, “電子陶瓷材料” 全華科技圖書股份有限公司, 第六章, (2004)
    [23]K. Wakino, T. Okada, N. Yoshida and K. Tomono, “A New Equation for Predicting the Dielectric Constant of a Mixture” J. Am. Ceram. Soc., Vol.76, pp.2588-2594, (1993)
    [24]W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to
    Ceramics” John Wiley & Sons, Inc., 2nd ed., p.947, (1976)
    [25]Shenglei CHE, Isao KANADA and Norimasa SAKAMOTO, “Dielectric Properties of Spherical Dielectric Oxide Powderand Its Ceramic-Polymer Composite” Japanese Journal of Applied Physics, Vol.44, No.9B, pp.7107-7110, (2005)
    [26]Kwonwoo Shin, Chanwoo Yang, Sang Yoon Yang, Hayoung Jeon, and Chan Eon Park,“Effects of polymer gate dielectrics roughness on pentacene field-effect transistors” Appl. Phys. Lett., No.88, 072109, (2006)
    [27]Soeren Steudel, Stijn De Vusser, Stijn De Jonge, Dimitri Janssen, Stijn Verlaak, Jan Genoe, and Paul Heremans,” Influence of the dielectric roughness on the performance of pentacene transistors” Appl. Phys. Lett., Vol.85, No.19, (2004)
    [28] D. Knipp, R. A. Street, and A. R. Volkel, “Morphology and electronic transport of polycrystalline pentacene thin-film transistors” Appl. Phys. Lett., Vol. 82, No.22, (2003)
    [29] S. Verlaak, V. Arkhipov, and P. Heremansa, “Modeling of transport in polycrystalline organic semiconductor films” Appl. Phys. Lett., Vol.82, No.5, (2003)
    [30]Seong Jun KANG, Myungkeun NOH, Dae Sik PARK, Hui Jung KIM, “Geometric Effect of Channel on Device Performance in Pentacene Thin-Film Transistor” Japanese Journal of Applied Physics, Vol.43, No.11A, pp.7718-7721, (2004)
    [31]Mo Zhu, Guirong Liang, Tianhong Cui, Kody Varahramyan, ”Temperature and field dependent mobility in pentacene-based thin film transistors” Solid-State Electronics, 49, pp.884-888, (2005)
    [32]Ricardo Ruiz, Devashish Choudhary, Bert Nickel, “Pentacene Thin-Film Growth” Chem. Mater., 16, pp.4497-4508, (2004)
    [33]Ricardo Ruiz, Alexios Papadimitratos, “Thickness Dependence of Mobility in Pentacene Thin-Film Transistors” Adv. Mater.,17, pp.1795-1798, (2005)
    [34] Gundlach, D. J. Kuo, C.-C. Nelson, S. F. Jackson, T. N. IEEE 57th Device Research Conference Digest, Santa Barbara, CA, IEEE Pub. Services: New York, pp.164-165, (1999)
    [35] Klauk, H. Halik, M. Zschieschang, U. Schmid, G. Radlik, W. Weber, Appl. Phys., 92, pp.5259-5263, (2002)
    [36] Kelley, T. W. Muyres, D. V. Baude, P. F. Smith, T. P. Jones, T. D. MRS Symp. Proc., 771, pp.169-179, (2003)
    [37]Yunseok Jang, Do Hwan Kim, Yeong Don Park, Jeong Ho Cho, “Influence of the dielectric constant of a polyvinyl phenol insulator on the field-effect mobility of a pentacene-based thin-film transistor” Appl. Phys. Lett., 87, 152105, (2005)

    下載圖示 校內:2008-08-15公開
    校外:2010-08-15公開
    QR CODE