| 研究生: |
陳家祥 Chen, Jia-Xiang |
|---|---|
| 論文名稱: |
製造業循環視角下總體變數與美國股市之互動分析 An Analysis of the Interaction Between Macroeconomic Variables and the U.S. Stock Market from the Perspective of Manufacturing Business Cycles |
| 指導教授: |
王澤世
Wang, Tse-Shih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融研究所 Graduate Institute of Finance |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | S&P 500 、總體經濟變數 、VECM 模型 、景氣循環 、製造業庫存週期 |
| 外文關鍵詞: | S&P 500, Macroeconomic Variables, VECM, Business Cycle, Manufacturing Inventory Cycle |
| 相關次數: | 點閱:21 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討總體經濟變數與美國股市(S&P 500)之長短期互動關係,並特別關注製造業庫存週期於不同景氣階段下對市場結構與資產價格反應之影響。有別於傳統文獻多聚焦單一總體指標之即時效應,本文採取多變數整合視角,運用向量誤差修正模型(VECM)建構同時涵蓋長期均衡與短期調整機制之實證架構,揭示總體變數如何形塑市場運作邏輯,並提供長期資產配置之結構依據。
研究採用 2000 年至 2024 年之月資料,內生變數包括非農就業人口(NFP)、個人消費支出(PCE)、製造業生產指數(MNFCTRIRSA)與 S&P 500 指數;外生變數則為零售銷售(Retail Sales)、初請失業救濟金人數(Initial Jobless Claims)與全球製造業 PMI,並以平穩序列原則透過 VECM 架構之外生項建模。Johansen 共整合檢定顯示模型變數間存在穩定長期關係,誤差修正項具統計顯著性,並輔以 IRF 與 FEVD 進行動態傳導結構分析。
實證結果指出,S&P 500 長期均衡結構受 PCE、NFP 與 MNFCTRIRSA 所共同制約,短期層面則呈現具節奏性之反應特徵:PCE 衝擊具即時顯著影響,MNFCTRIRSA 展現中期持續推動效果,NFP 則發揮延後調整之支持角色。外生變數雖未參與共整合關係,然透過短期傳導結構發揮穩定殘差與邊際調整之效果,增進模型整體穩健性。
進一步結合製造業補庫存與去化週期特徵,本文提出「補庫存—高峰—去庫存—低谷」四階段分類架構,成功對應市場行為轉折,補足總體變數於週期辨識與資產配置之應用邏輯。整體結果支持「市場短期波動難以預測,惟長期具結構規律可循」之命題,並建立一套具理論嚴謹性與應用潛力的總體—金融互動分析框架,為後續建構景氣監測系統與制度化資產配置模型提供理論依據。
This study examines the long- and short-term interactions between macroeconomic variables and the U.S. stock market (S&P 500), with a particular focus on the manufacturing inventory cycle across business cycle phases. Using monthly data from 2000 to 2024, a Vector Error Correction Model (VECM) is constructed to capture both long-run equilibrium and short-run dynamics among key variables, including Nonfarm Payrolls (NFP), Personal Consumption Expenditures (PCE), Manufacturing Production, and the S&P 500. Retail Sales, Initial Jobless Claims, and the Global Manufacturing PMI are incorporated as weakly exogenous factors. Johansen cointegration results confirm a stable long-term relationship, while impulse response and variance decomposition analyses reveal distinct transmission patterns. PCE shows immediate market impact, manufacturing output contributes to medium-term movements, and NFP provides lagged adjustment support. The study proposes a four-phase inventory-based business cycle framework to interpret structural shifts in market behavior. Findings support the hypothesis that while short-term price movements are volatile, long-term macro-financial relationships exhibit measurable regularities that can inform investment decision-making.
Ahmed, M., & Higgins, M. (2024). Do Economic Surprises Affect Stock Returns? The Role of Sentiment. Journal of Economics, Finance, and Accounting Studies, 6(6), 34-46. https://doi.org/10.32996/jefas.2024.6.6.4
Ak, B. K., & Patatoukas, P. N. (2016). Customer‐base concentration and inventory efficiencies: Evidence from the manufacturing sector. Production and Operations Management, 25(2), 258-272. https://doi.org/10.1111/poms.12417
Asness, C. S. (2002). Fight the Fed model: the relationship between stock market yields, bond market yields, and future returns. Bond Market Yields, and Future Returns (December 2002). https://dx.doi.org/10.2139/ssrn.381480
Balduzzi, P., Elton, E. J., & Green, T. C. (2001). Economic News and Bond Prices: Evidence from the U.S. Treasury Market. The Journal of Financial and Quantitative Analysis, 36(4), 523–543. https://doi.org/10.2307/2676223
Banerjee, A., Marcellino, M., & Masten, I. (2005). Leading indicators for euro‐area inflation and GDP growth. Oxford Bulletin of Economics and Statistics, 67, 785-813. https://doi.org/10.1111/j.1468-0084.2005.00141.x
Barro, R. J. (1990). The stock market and investment. The review of financial studies, 3(1), 115-131. https://doi.org/10.1093/rfs/3.1.115
Bekaert, G., Hoerova, M., & Duca, M. L. (2013). Risk, uncertainty and monetary policy. Journal of Monetary Economics, 60(7), 771-788. https://doi.org/10.1016/j.jmoneco.2013.06.003
Blanchard, O. J., & Quah, D. (1989). The Dynamic Effects of Aggregate Demand and Supply Disturbances. The American Economic Review, 79(4), 655–673. http://www.jstor.org/stable/1827924
Boyd, J. H., Hu, J., & Jagannathan, R. (2005). The stock market's reaction to unemployment news: Why bad news is usually good for stocks. The Journal of Finance, 60(2), 649-672. https://doi.org/10.1111/j.1540-6261.2005.00742.x
Camacho, M., & Perez‐Quiros, G. (2010). Introducing the euro‐sting: Short‐term indicator of euro area growth. Journal of Applied Econometrics, 25(4), 663-694. https://doi.org/10.1002/jae.1174
Campbell, J. Y., & Shiller, R. J. (1988). Stock prices, earnings, and expected dividends. the Journal of Finance, 43(3), 661-676. https://doi.org/10.1111/j.1540-6261.1988.tb04598.x
Chen, N.-F., Roll, R., & Ross, S. A. (1986). Economic Forces and the Stock Market. The Journal of Business, 59(3), 383–403. http://www.jstor.org/stable/2352710
Cieslak, A., & Pang, H. (2021). Common shocks in stocks and bonds. Journal of Financial Economics, 142(2), 880-904. https://doi.org/10.1016/j.jfineco.2021.06.008
D’Agostino, A., Giannone, D., & Surico, P. (2006). (Un)predictability and macroeconomic stability (ECB Working Paper No. 605). European Central Bank. https://ssrn.com/abstract=890990
Enders, W. (2014). Applied econometric time series (4th ed.). John Wiley & Sons.
Engle, R. F., & Granger, C. W. J. (1987). Co-Integration and Error Correction: Representation, Estimation, and Testing. Econometrica, 55(2), 251–276. https://doi.org/10.2307/1913236
Fama, E. F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, 25(2), 383–417. https://doi.org/10.2307/2325486
Filardo, A. J. (1999). How reliable are recession prediction models?. Economic Review-Federal Reserve Bank of Kansas City, 84, 35-56. https://www.kansascityfed.org/documents/1184/1999-How%20Reliable%20Are%20Recession%20Prediction%20Models%3F.pdf
Granger, C. W. J., & Newbold, P. (1974). Spurious regressions in econometrics. Journal of Econometrics, 2(2), 111–120. https://doi.org/10.1016/0304-4076(74)90034-7
Hamilton, J. D., & Susmel, R. (1994). Autoregressive conditional heteroskedasticity and changes in regime. Journal of econometrics, 64(1-2), 307-333. https://doi.org/10.1016/0304-4076(94)90067-1
Hassan, M., Nassar, R., & Bradford, T. (2025). Long-Term and Short-Term Relationships between the Us Stock Market and Macroeconomic Variables: An Empirical Study. Journal of International Business Disciplines, 20(1), 1–19.
Islam, S. (2024). Investment-specific technology shocks and business cycle: evidence from a sign restriction approach. Indian Economic Review, 59(1), 249-283. https://doi.org/10.1007/s41775-024-00216-0
Johansen, S. (1995). Likelihood-based inference in cointegrated vector autoregressive models. OUP Oxford.
Juselius, K. (2006). The cointegrated VAR model: Methodology and applications. Oxford University Press.
Kalumbu, S. A. (2021). Dynamic interaction between macroeconomic indicators and asset markets in Namibia (Doctoral dissertation, University of Namibia). https://repository.unam.edu.na/handle/11070/3126
Kaufmann, D., & Scheufele, R. (2017). Business tendency surveys and macroeconomic fluctuations. International Journal of Forecasting, 33(4), 878-893. https://doi.org/10.1016/j.ijforecast.2017.04.005
Ke, J. Y. F., Otto, J., & Han, C. (2022). Customer-Country diversification and inventory efficiency: Comparative evidence from the manufacturing sector during the pre-pandemic and the COVID-19 pandemic periods. Journal of Business Research, 148, 292-303. https://doi.org/10.1016/j.jbusres.2022.04.066
Koenig, E. F. (2002). Using the purchasing managers’ index to assess the economy’s strength and the likely direction of monetary policy. Federal Reserve Bank of Dallas Economic and Financial Policy Review, 1(6), 1-14. https://core.ac.uk/download/pdf/6971097.pdf
Kotsbak, A., & Zakariassen, L. T. (2016). What are the effects of Large Scale Asset Purchases on asset prices in the US? (Master's thesis, Handelshøyskolen BI). https://biopen.bi.no/bi-xmlui/bitstream/handle/11250/2442475/MSc0122016.pdf?sequence=1
Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer Science & Business Media.
Mazumder, M. T. R., Shourov, M. S. H., Rasul, I., Akter, S., & Miah, M. K. (2025). The Impact of Macroeconomic Factors on the US Market: A Data Science Perspective. Journal of Economics, Finance and Accounting Studies, 7(2), 208-219. https://doi.org/10.32996/jefas.2025.7.2.18
Patatoukas, P. N. (2012). Customer-Base Concentration: Implications for Firm Performance and Capital Markets. The Accounting Review, 87(2), 363–392. http://www.jstor.org/stable/23245608
Phillips, P. C. B. (1991). Optimal Inference in Cointegrated Systems. Econometrica, 59(2), 283–306. https://doi.org/10.2307/2938258
Pierdzioch, C., Döpke, J., & Hartmann, D. (2008). Forecasting stock market volatility with macroeconomic variables in real time. Journal of Economics and Business, 60(3), 256-276. https://doi.org/10.1016/j.jeconbus.2007.03.001
Polk, C., Haghbin, M., & De Longis, A. (2020). Time‐Series Variation in Factor Premia: The Influence of the Business Cycle. Market Momentum: Theory and Practice, 218-242. https://doi.org/10.1002/9781119599364.ch12
Rahman, M., & Islam, A. (2020). Some dynamic macroeconomic perspectives for India’s economic growth: Applications of linear ARDL bounds testing for co-integration and VECM. Journal of Financial Economic Policy, 12(4), 641-658. https://doi.org/10.1108/JFEP-11-2018-0165
Ramey, V. A. (2011). Identifying government spending shocks: It's all in the timing. The quarterly journal of economics, 126(1), 1-50. https://doi.org/10.1093/qje/qjq008
Sims, C. A. (1980). Macroeconomics and Reality. Econometrica, 48(1), 1–48. https://doi.org/10.2307/1912017
Smets, F., & Wouters, R. (2007). Shocks and frictions in US business cycles: A Bayesian DSGE approach. American economic review, 97(3), 586-606. https://doi.org/10.1257/aer.97.3.586
Steinker, S., & Hoberg, K. (2013). The impact of inventory dynamics on long-term stock returns–an empirical investigation of US manufacturing companies. Journal of Operations Management, 31(5), 250-261. https://doi.org/10.1016/j.jom.2013.05.002
Sterman, J. D. (1986). The economic long wave: theory and evidence. System Dynamics Review, 2(2), 87-125. https://doi.org/10.1002/sdr.4260020202
Stock, J. H., & Watson, M. W. (1989). New indexes of coincident and leading economic indicators. NBER macroeconomics annual, 4, 351-394.
Stock, J. H., & Watson, M. W. (2003). Forecasting output and inflation: The role of asset prices. Journal of economic literature, 41(3), 788-829. https://doi.org/10.1257/002205103322436197
Ternbo, S. (2022). The impact of macroeconomic variables on the Swedish stock market : A VECM approach (Dissertation). Retrieved from https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-199665
Tsuchiya, Y. (2014). Purchasing and supply managers provide early clues on the direction of the US economy: An application of a new market-timing test. International Review of Economics & Finance, 29, 599-618. https://doi.org/10.1016/j.iref.2013.09.002
Yale, C., & Forsythe, A. B. (1976). Winsorized Regression. Technometrics, 18(3), 291–300. https://doi.org/10.1080/00401706.1976.10489449
Zarnowitz, V., & Braun, P. (1993). Twenty-two years of the NBER-ASA quarterly economic outlook surveys: aspects and comparisons of forecasting performance. In Business cycles, indicators, and forecasting (pp. 11-94). University of Chicago Press. http://www.nber.org/chapters/c7189