簡易檢索 / 詳目顯示

研究生: 洪瑜嬪
Hung, Yu-Pin
論文名稱: 具電壓箝位高升壓直流-直流轉換器
Implementation of a High Step-Up DC-DC Converter with a Three-Winding Coupled Inductor and Clamp Capacitor
指導教授: 楊宏澤
Yang, Hong-Tzer
共同指導教授: 陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 57
中文關鍵詞: 升壓轉換器耦合電感箝位電容
外文關鍵詞: Boost Converter, Coupled Inductor, Clamp Capacitor
相關次數: 點閱:161下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 再生能源在生活中扮演的角色越來越重要,然而在電能轉換上,再生能源的輸出電壓大約在35 – 60-V之間,需要一升壓轉型換器將其電壓提升至適合的電壓電位以併入市電。理論上,傳統的昇壓型轉換器可透過較大的開關責任週期將低電壓升至較高的電壓,但傳統昇壓型轉換器存在許多問題,尤其是線路上的等效串聯電阻和二極體的逆向回覆電流導致電壓無法升至較高的電壓電位,並且效率較低。
    本論文提出一具電壓箝位高昇壓比直流-直流轉換器。本文提出之架構係利用三繞組耦合電感結合倍壓電路以提高昇壓比,並避免過大的責任週期。所提轉換器之激磁電感操作於連續導通模式,使其輸入電流保持連續不降為零,以減少電流漣波,其較低的電流漣波可減少使用之輸入濾波電解電容值,並增加其壽命與可靠度。本架構加上一箝位電容,使主動開關上跨壓可有效的降低。此外,所提電路耦合電感之漏電感能量不但可被回收至輸出負載,主動開關上開路瞬間漏電感能量所造成的突波電壓亦可被箝制;因主動開關所需電壓應力減少,故可採用低電壓規格及低導通電阻之主動開關,可進一步減少其切換瞬間所形成之切換損失及導通損失,輸出二極體的逆向回覆電流亦可有效的被抑制,使轉換器損失降低。
    本論文說明所提出的直流-直流昇壓轉換器分別透過電腦模擬和實作驗證所提電路的可行性。在硬體電路方面,成功實現一功率200 W,輸入電壓42 V和輸出電壓400 V之實體電路。本論文將討論其電路操作原理、電路穩態分析以及元件電壓應力分析,以驗證所提電路的可行性。

    Renewable energy is becoming more and more important, but the output voltage ranges of renewable energy between 35 and 60 V, should be converted further to adapt to load demand. Therefore, a high step-up voltage conversion ratio DC-DC converter is required to boost the output voltage of renewable energy resources. Theoretically, a conventional DC-DC Boost converter can achieve such a high step-up output voltage with an extreme duty ratio. But the voltage conversion ratio and the efficiency are limited by equivalent series resistance (ESR), switching loss, and reverse-recovery problems.
    A high step-up DC-DC converter with three-winding coupled inductor and clamp capacitor is proposed in the thesis. The proposed converter in the thesis utilizes a three-winding coupled inductor and voltage doubler to increase voltage conversion ratio without an extreme duty ratio. The input current is operated at CCM, therefore, the input current ripple can be reduced and the lifetime and reliability of the input filter can be increased accordingly. Clamp capacitor in the proposed converter is to clamp and reduce the voltage stress of active switch. The power switch with low power-rating and low on-resistance can thus be utilized to reduce switching and conduction losses. In the proposed circuit, the leakage energy can also be recycled to the output capacitor at the load terminal and the reverse recovery problem of output diode can be alleviated to increase the efficiency.
    The proposed converter is verified via computer simulations and experiments. On the hardware implementation, a 200 W prototype circuit, having input voltage of 42 V and output voltage of 400 V, is used to verify the feasibility of the proposed converter with operation principles, steady-state analyses, and voltage stress on each device discussed in the thesis.

    摘 要. I ABSTRACT III 誌 謝. V LIST OF TABLE VIII LIST OF FIGURES IX LIST OF FIGURES IX CHAPTER 1 INTRODUCTION 1 1.1 Backgrounds and Motivations 1 1.2 Review of Literature 2 1.3 Research Method 4 1.4 Contributions of the Thesis 5 1.5 Organization of the Thesis 5 CHAPTER2 EXISTING HIGH STEP-UP DC-DC CONVERTER WITH COUPLED INDUCTOR 7 2.1 Introduction 7 2.2 Basic Boost converter 8 2.3.1 Conventional Flyback Converter 11 2.3.2 High-Efficiency Step-Up Converter 12 2.3.3 High Boost Converter Using Voltage Multiplier 13 2.3.4 A High Step-Up DC-DC Converter Based on Three-State Switching Cell 14 2.3.5 High Step-Up Active-Clamp Converter With Input-Current Doubler and Ouptut-Voltage Doubler 16 2.4 Summary 17 CHAPTER 3 THE PROPOSED HIGH STEP-UP DC-DC CONVERTER 19 3.1 Introduction 19 3.2 The Proposed High Step-Up DC-DC Converter 19 3.2.1 Operating Principles 19 3.2.2 Steady-State Analysis 28 3.2.3 Analysis of Voltage Stress of the Power Devices 33 3.3 Design Considerations 36 3.3.1 Inductor 36 3.3.2 Capacitor 36 3.4 Summary 38 CHAPTER 4 SIMULATION AND EXPERIMENTAL RESULTS 40 4.1 Introduction 40 4.2 Description of the Implemented Circuit 40 4.2.1 Specifications of the Circuit 40 4.2.2 Circuit Implementations 41 4.3 Simulation Results 42 4.4 Experimental Results 46 4.5 Summary 50 CHAPTER 5 CONCLUSIONS AND FUTURE RESERACHES 51 5.1 Conclusions 51 5.2 Future Prospects 52 REFERENCES 54

    [1] J. M. Correa, F. A. Farret, N. Canha and M. G. Simoes, 「An electrochemical-based fuel-cell model suitable for electrical engineering automation approach,」IEEE Trans. Ind. Electron., vol. 51, no. 5, pp. 1103-1112, Oct. 2004.
    [2] Z. Jiang and R. A. Dougal, 「A compact digitally controlled fuel cell/battery hybrid power source,」IEEE Trans. Ind. Electron., vol.53, no. 4, pp. 1094-1104, Aug. 2006.
    [3] S. M. Lukic, J. Cao, R. C. Bansal, F. Rodriguez and A. Emadi, 「Energy storage systems for automotive applications,」IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2258-2267, Jun. 2008.
    [4] S. R. Bull, "Renewable Energy Today and Tomorrow," IEEE Proceedings, vol. 89, no. 8, pp. 1216-1226, Aug 2001.
    [5] W. Li, X. Lv, Y. Deng, J. Liu and X. He," A Review of Non-Isolated High Step-Up DC-DC Converters in Renewable Energy Applications," IEEE Applied Power Electronics Conference and Exposition, pp. 364-369, 2009.
    [6] R. W. Erickson and D. Maksimović, FUNDAMENTALS OF POWER ELECTRONICS. 2nd edition, John Wiley, New York, 1950.
    [7] J. W. Baek, M. H. Ryoo, T. J. Kim, D. W. Yoo, J. S. Kim,「High Boost Converter Using Voltage Multiplier Voltage Gain,」 Industrial Electronics Society, 2005. IECON 2005. 31st Annual Conference of IEEE, 2005
    [8] S. J. Finney, B. W. Williams, and T. C. Green, 「RCD snubber revisited,」IEEE Trans. Ind. Appl., vol. 32, no. 1, pp. 155-160, Jan./Feb. 1996.
    [9] F. A. Himmelstoss and P. H. Wurm, 「Low loss converters with step-up conversion ratio working at the border between continuous and discontinuous mode,」 in Proc. Electron., Circuits Syst., 2000, vol. 2, pp. 734–737.
    [10] K. C. Tseng and T. J. Laing, 「Novel high-efficiency step-up converter,」in Proc. IEE Electric Power Appl., vol. 151, no. 2, pp.182-190, Mar. 2004.
    [11] T. F. Wu, Y. S. Lai and J. C. Hung, 「Boost Converter with Coupled Inductors and Buck-Boost Type of Active Clamp,」IEEE Trans. Ind. Electron., Vol. 55, no. 1, Jan 2008.
    [12] J. Y. Lee and S. N. Hwang, 「Non-Isolated High-Gain Boost Converter using Voltage-Stacking Cell,」Electronics Letters, vol.44, no. 10, pp. 644-645, May 2008.
    [13] E. H. Kim and B. H. Kwon,「High Step-Up Resonant Push-Pull Converter with High Efficiency,」IET Conference on Power Electronics, vol. 2, no. 1, pp. 79-89, 2009.
    [14] X. Yu, M.R. Starke, L.M. Tolbert and B. Ozpineci, 「Fuel Cell Power Conditioning for Electric Power Applications: a Summary,」 IET Conference on Electric Power Applications, vol. 1, no. 5, pp. 643-656, 2007.
    [15] G. V. Torrico-Bascope, S. A. Vasconcelos, R. P. Torrico-Bascope, F. L. M. Antunes, D. S. de Oliveira, C. G. C. Branco,「A High Step-Up DC-C Converter Based on Three-State Switching Cell,」IEEE International Symposium on Industrial Electronics, vol. 2, pp. 998-1003, July 2006.
    [16] N. P. Papanikolaou and E.C. Tatakis, 「Active voltage clamp in flyback converters operating in CCM mode under wide load variation,」IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 632-640, Jun. 2004.
    [17] B. R. Lin and F. Y. Hsieh, 「Soft-switching zeta-flyback converter with a buck-boost type of active clamp,」IEEE Trans. Ind. Electron., vol.54, no.5, pp. 2813-2822, Oct. 2007.
    [18] F. Zhang and Y. Yan, 「Novel forward-flyback hybrid bidirectional DC-DC converter,」IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1578-1584, May 2009.
    [19] Q. Zhao and F. C. Lee,「High-efficiency, high step-up DC-DC converters,」IEEE Trans. Power Electronic., vol. 18, no. 1, pp. 65-73, Jan. 2003.
    [20] K. B. Park, H. W. Seong, H. S. Kim, G. W. Moon and M. J. Youn,「Integrated boost-sepic converter for high step-up applications,」in Proc. IEEE PESC, 2008, pp. 944-950.
    [21] J. M. Kwon and B. H. Kwon, 「High Step-Up Active-Clamp Converter With Input-Current Doubler and Output-Voltage Doubler for Fuel Cell Power Systems,」IEEE Trans. Power Electronic., vol. 24, no. 1, pp. 108-115, Jan. 2009.
    [22] http://www.alldatasheet.com
    [23] N. Mohan, T. M. Undeland, and W. P. Robbin, Power Electronics, Third ed. New York: John Wiely & Sons Inc., 1995.
    [24] C. T. Pan, S. K. Liang and C. M. Lai, 「A Zero Input Current Ripple Boost Converter for Fuel Cell Applications by Using a Mirror Ripple Circuit,」 IEEE Conference on Power Electronics and Motion Control, pp. 787-793, 2009.
    [25] A. Testa, S. De Caro, A. Consoli, M. Cacciato, 「An Active Current Ripple Compensation Technique in Grid Connected Fuel Cell Applications,」 IEEE Conference on Energy Conversion Congress and Exposition, pp. 2642 -2649, 2009.
    [26] P. Luo, L. Luo, Z. Li, J. Y. Yang and G. Chen, 「Skip Cycle Modulation in Switching DC-DC Converter,」 IEEE International Conference on Communications, Circuits and Systems and West Sino Expositions, vol. 2, pp. 1716-1719, 2002.

    下載圖示 校內:2014-08-23公開
    校外:2014-08-23公開
    QR CODE