簡易檢索 / 詳目顯示

研究生: 許玳溶
Hsu, Tai-Jung
論文名稱: 應用共模諧振擴展技術之K頻段低相位雜訊Class-F23壓控振盪器
K-Band Low-Phase-Noise Class-F23 VCO Using Common-Mode Resonance Expansion Technique
指導教授: 鄭光偉
Cheng, Kuang-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 112
中文關鍵詞: 5G 行動通訊共模諧振相位雜訊閃爍雜訊抑制毫米波壓控振盪器
外文關鍵詞: 5G mobile communication, Common-mode (CM) resonance, phase noise (PN), flicker noise suppression, millimeter-wave (mmW), voltage-controlled oscillator (VCO)
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文提出兩個針對5G行動通訊應用的K頻段LC壓控振盪器(VCO)電路架構,為了資料傳輸的品質,因此需要產生低相位雜訊的LO訊號。兩電路架構的特點皆是採用共模(CM)諧振擴展技術加上 Class-F 操作原理,以達到在頻寬內都能達到抑制閃爍雜訊上轉換,藉由在二次與三次諧波處形成共振,來有效優化脈衝靈敏度函數(ISF)之波形,提升相位雜訊效能。此外,透過設計變壓器本身所具備的共模耦合係數(kCM),可擴展共模共振頻寬,無需手動調整以對準二次諧波,使VCO同時具備優異的相位雜訊表現。
    第一個架構為傳統的變壓器諧振腔VCO,主要是利用設計共模耦合係數,來達到振盪頻率範圍內都能維持很好的相位雜訊表現,並且相對目前所提出的類似架構而言,此架構不需佔用額外的晶片面積,此電路以台積電40奈米CMOS技術實現,核心電路面積僅0.05 mm2,並且操作於23.9 至 27.5 GHz的頻率,在 1 MHz 偏移處達成 -104.5 dBc/Hz 的相位雜訊,在0.6 V 供應電壓下功耗僅為 5.4 mW。其 fig-ure-of-merit(FoM)與考慮可調範圍的 FoMT 分別為 184.7 與 187.6 dBc/Hz
    而第二個架構的諧振腔則是以交叉耦合變壓器取代傳統變壓器設計,使其消耗功率能夠進一步降低,也增加了可設計的參數以減少電路設計複雜度。與第一個架構同樣使用台積電40奈米技術實現,核心面積僅0.04 mm2,此VCO的振盪頻率操作於19.5到22.7 GHz,在0.5 V 供應電壓下達到1 MHz偏移處有-102.4 dBc/Hz 的相位雜訊表現,功率消耗僅有3.0 mW,量測結果與模擬的落差是由於量測環境尚未完善,其中包含環境雜訊以及地線雜訊可能耦合到振盪器電路之中,導致相位雜訊劣化。若能進一步改善量測環境,相位雜訊的實際表現有望更接近模擬結果,進一步驗證所提出架構的有效性。

    This thesis presents two K-band LC voltage-controlled oscillator (VCO) architectures targeting 5G mobile communication applications, where a low-phase-noise local oscillator (LO) is critical for ensuring high-quality data transmission. Both proposed VCOs employ a combination of common-mode (CM) resonance expansion and Class-F operation to suppress flicker noise up-conversion across a wide tuning range. By inducing resonances at the second and third harmonic frequencies, the impulse sensitivity function (ISF) waveform is effectively shaped, thereby enhancing phase noise performance. Furthermore, by leveraging the inherent common-mode coupling coefficient (kCM) of the transformer, the CM resonance bandwidth can be extended without requiring manual tuning of single-ended capacitance to align with the second harmonic, enabling consistent low phase noise across the tuning range.
    The first VCO architecture is based on a conventional transformer-based LC tank. By carefully designing the CM coupling coefficient, this structure achieves wideband CM resonance while maintaining a compact layout with no additional chip area compared to prior work. Implemented in TSMC 40-nm CMOS technology, the core occupies only 0.05 mm² and operates from 23.9 GHz to 27.5 GHz. It achieves a phase noise of –104.5 dBc/Hz at 1 MHz offset while consuming only 5.4 mW from a 0.6 V supply. The corresponding fig-ure-of-merit (FoM) and tuning-aware FoMT are 184.7 dBc/Hz and 187.6 dBc/Hz, respec-tively.
    The second VCO architecture replaces the conventional transformer with a cross-connected transformer to further reduce power consumption and provide more flexibil-ity in design parameter optimization, thus simplifying circuit implementation. Similar to the first architecture, the circuit is implemented in TSMC 40-nm CMOS technology, with a compact core area of only 0.04 mm². The VCO operates over a frequency range of 19.5–22.7 GHz, achieving a phase noise of –102.4 dBc/Hz at 1-MHz offset under a 0.5-V supply, while consuming only 3.0 mW of power. The discrepancy observed between the measured and simulated results is attributed to limitations in the measurement setup, where environmental noise and ground loop interference may have coupled into the oscillator core. With further refinement of the measurement environment, the phase noise performance is expected to more closely align with simulation, thereby further validating the effectiveness of the proposed architecture.

    Chapter 1 Introduction 1 1-1. Motivation 1 1-2. Specifications Required for VCO 3 1-3. Thesis Overview 4 Chapter 2 General Principles of VCO and Literature Review 5 2-1. Basic Theory of LC Oscillator 5 2-2. Performance Metrics of VCO 11 2-2-1. Quality Factor (Q) 11 2-2-2. Tuning Range 12 2-2-3. Tuning Sensitivity (KVCO) 12 2-2-4.Power Consumption 13 2-2-5.Output Power 13 2-2-6. Phase Noise 14 2-2-7. Figure-of-Merit (FoM) 16 2-3. Transformer Introduction 16 2-3-1. Mutual Coupling 16 2-3-2. Coupling Coefficient 19 2-3-3. Transformer Impedance 19 2-4. Flicker Noise Up-Conversion 20 2-4-1. Flicker Noise 21 2-4-2. Impulse Sensitivity Function (ISF) 21 2-5. Literature Review on Transformer-Based VCO 30 2-5-1. Transformer-Feedback VCO [7] 30 2-5-2. Class-F VCO [8] 32 2-5-3. 1/f Noise Up-Conversion Reduction & Class-F23 VCO [9] 35 2-5-4. Wideband Harmonic Shaping VCO [11] 38 2-6. Conclusion of Literature Review 40 Chapter 3 K-Band Class-F23 VCO using Common-Mode Resonance Expansion Technique 41 3-1. Class-F23 VCO with Customized Layout Transformer Tank 41 3-1-1. Analysis of a Customized Layout Transformer Tank 44 3-1-2. Verification of Flicker Noise Up-Conversion Suppression 48 3-1-3. Design Consideration 52 3-1-4. Simulation Result 57 3-2. Class-F23 VCO with Cross-Connected Transformer Tank 63 3-2-1. Analysis of Cross-Connected Transformer Tank 65 3-2-2. Design Consideration 70 3-2-3. Simulation Result 74 Chapter 4 Measurement Result 79 4-1. Class-F23 VCO with Customized Layout Transformer Tank 79 4-1-1. Measurement Setup 79 4-1-2. Measurement Result 79 4-2. Class-F23 VCO with Cross-Connected Transformer Tank 86 4-2-1. Measurement Setup 86 4-2-2.Measurement Result 88 Chapter 5 Conclusions and Future Work 95 5-1. Conclusions 95 5-2. Future Work 95 Reference 97

    [1] GIGABYTE. "What is 5G? An Introduction to 5G Networks and Applications."https://www.gigabyte.com/Article/what-you-must-know-before-moving-into-5g
    [2] B. Sadhu, M. Ferriss, and A. Valdes-Garcia, "A 52 GHz Frequency Synthesizer Featuring a 2nd Harmonic Extraction Technique That Preserves VCO Performance," IEEE J. Solid-State Circuits, vol. 50, no. 5, pp. 1214-1223, 2015.
    [3] Z. Zong, M. Babaie, and R. B. Staszewski, "A 60 GHz Frequency Generator Based on a 20 GHz Oscillator and an Implicit Multiplier," IEEE J. Solid-State Circuits, vol. 51, no. 5, pp. 1261-1273, 2016.
    [4] B. Razavi, RF Microelectronics (2nd Edition). 2011.
    [5] M. S. Charles Alexander, Fundamentals of Electric Circuits (6th Edition). 2017.
    [6] A. Hajimiri and T. H. Lee, "A general theory of phase noise in electrical oscillators," IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, 1998.
    [7] K. Kwok and H. C. Luong, "Ultra-low-Voltage high-performance CMOS VCOs using transformer feedback," IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 652-660, 2005.
    [8] M. Babaie and R. B. Staszewski, "A Class-F CMOS Oscillator," IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3120-3133, 2013.
    [9] M. Shahmohammadi, M. Babaie, and R. B. Staszewski, "A 1/f Noise Upconversion Reduction Technique for Voltage-Biased RF CMOS Oscillators," IEEE J. Solid-State Circuits, vol. 51, no. 11, pp. 2610-2624, 2016.
    [10] J. Groszkowski, "The Interdependence of Frequency Variation and Harmonic Content, and the Problem of Constant-Frequency Oscillators," Proceedings of the Institute of Radio Engineers, vol. 21, no. 7, pp. 958-981, 1933.
    [11] H. Guo, Y. Chen, P. I. Mak, and R. P. Martins, "20.1 A 5.0-to-6.36GHz Wideband-Harmonic-Shaping VCO Achieving 196.9dBc/Hz Peak FoM and 90-to-180kHz 1/f3 PN Corner Without Harmonic Tuning," in 2021 IEEE International Solid-State Circuits Conference (ISSCC), 13-22 Feb. 2021 2021, vol. 64, pp. 294-296.
    [12] Y. Chen, P. I. Mak, and R. P. Martins, "High-Performance Harmonic-Rich Single-Core VCO With Multi-LC Tank: A Tutorial," IEEE Trans. Circuits Syst. II Express Briefs, vol. 69, no. 7, pp. 3115-3121, 2022.
    [13] M. Vigilante and P. Reynaert, "On the Design of Wideband Transformer-Based Fourth Order Matching Networks for E-Band Receivers in 28-nm CMOS," IEEE J. Solid-State Circuits, vol. 52, no. 8, pp. 2071-2082, 2017.
    [14] Z. Lin, H. Jia, R. Ma, W. Deng, Z. Wang, and B. Chi, "A Low-Phase-Noise VCO With Common-Mode Resonance Expansion and Intrinsic Differential 2nd-Harmonic Output Based on a Single Three-Coil Transformer," IEEE J. Solid-State Circuits, vol. 59, no. 1, pp. 253-267, 2023.
    [15] Y. Hu, T. Siriburanon, and R. B. Staszewski, "A Low-Flicker-Noise 30-GHz Class-F23 Oscillator in 28-nm CMOS Using Implicit Resonance and Explicit Common-Mode Return Path," IEEE J. Solid-State Circuits, vol. 53, no. 7, pp. 1977-1987, 2018.
    [16] F. Pepe, A. Bonfanti, S. Levantino, P. Maffezzoni, C. Samori, and A. L. Lacaita, "An efficient linear-time variant simulation technique of oscillator phase sensitivity function," in 2012 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), 19-21 Sept. 2012 2012, pp. 17-20.
    [17] F. Hong, H. Zhang, and D. Zhao, "An X-Band CMOS VCO Using Ultra-Wideband Dual Common-Mode Resonance Technique," IEEE Trans. Circuits Syst. I Regul. Pap., vol. 69, no. 9, pp. 3579-3590, 2022.
    [18] D. Zhao and P. Reynaert, "A 40-nm CMOS E-Band 4-Way Power Amplifier With Neutralized Bootstrapped Cascode Amplifier and Optimum Passive Circuits," IEEE Trans. Microwave Theory Tech., vol. 63, no. 12, pp. 4083-4089, 2015.
    [19] H. Shao, R. P. Martins, and P. I. Mak, "23.4 A 167 μW 71.7dB-SFDR 2.4GHz BLE Receiver Using a Passive Quadrature-Front-End, a Double-Sided Double-Balanced Cascaded Mixer and a Dual-Transformer-Coupled Class-D VCO," in 2024 IEEE International Solid-State Circuits Conference (ISSCC), 18-22 Feb 2024, vol. 67, pp. 406-408.
    [20] H. Shao, R. P. Martins, and P. I. Mak, "A 167- μW 71.7-dB SFDR 2.4-GHz BLE Receiver Using a Passive Quadrature Front End, a Double-Sided Double-Balanced Cascaded Mixer, and a Dual-Transformer-Coupled Class-D VCO," IEEE J. Solid-State Circuits, vol. 59, no. 12, pp. 3980-3992, 2024.
    [21] A. Franceschin, P. Andreani, F. Padovan, M. Bassi, and A. Bevilacqua, "A 19.5-GHz 28-nm Class-C CMOS VCO, With a Reasonably Rigorous Result on 1/f Noise Upconversion Caused by Short-Channel Effects," IEEE J. Solid-State Circuits, vol. 55, no. 7, pp. 1842-1853, 2020.
    [22] D. Murphy and H. Darabi, "A 27-GHz Quad-Core CMOS Oscillator With No Mode Ambiguity," IEEE J. Solid-State Circuits, vol. 53, no. 11, pp. 3208-3216, 2018.
    [23] Q. Shi, D. Guermandi, J. Craninckx, and P. Wambacq, "Flicker noise upconversion mechanisms in K-band CMOS VCOs," in 2015 IEEE Asian Solid-State Circuits Conference (A-SSCC), 9-11 Nov. 2015 2015, pp. 1-4.
    [24] Z. Kang, C. Song, and L. Wu, "A 22.8–26.0-GHz VCO With Discriminative-Harmonic-Current-Manipulating for Phase Noise Improvement," IEEE J. Solid-State Circuits, pp. 1-13, 2024.
    [25] S. A. R. Ahmadi-Mehr, M. Tohidian, and R. B. Staszewski, "Analysis and Design of a Multi-Core Oscillator for Ultra-Low Phase Noise," IEEE Trans. Circuits Syst. I Regul. Pap., vol. 63, no. 4, pp. 529-539, 2016.
    [26] Q. Wu et al., "An Enhanced Class-F Dual-Core VCO With Common-Mode-Noise Self-Cancellation and Isolation Technique," IEEE J. Solid-State Circuits, vol. 59, no. 8, pp. 2441-2454, 2024.

    無法下載圖示 校內:2030-09-01公開
    校外:2030-09-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE