| 研究生: |
陳鈴諭 Chen, Ling-Yu |
|---|---|
| 論文名稱: |
利用生物微機電與3D列印技術研發細胞球生物晶片 Development of Cell Sphere Biochip by using 3D Printing and BioMEMS Technology |
| 指導教授: |
吳佳慶
Wu, Chia-Ching 蘇芳慶 Su, Fong-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 脂肪幹細胞 、神經球 、生物微機電 、3D 列印 |
| 外文關鍵詞: | adipose derived stem cells, neural linage cells, lithography processing, 3D Printing |
| 相關次數: | 點閱:126 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
受損神經在修復過程中容易產生神經瘤 (neuroma) 與神經疤 (neural scar)阻礙神經傳導。近期研究中,幹細胞已被證實對於神經修復具有潛在治療效果。本實驗室先前研究發現,將脂肪中分離出之脂肪幹細胞 (adipose derived stem cells, ASCs) 種植在甲殼素塗佈之表面,其表面塗層能促使細胞形成細胞球並分化為神經譜系細胞 (neural linage cells, NLCs)。但對於如何控制形成單一尺寸大小的細胞球,仍具有其挑戰性。因此,本篇論文的研究目的是製造出能夠形成單一尺寸細胞球的細胞晶片,並評估在各種控制條件下形成的神經球特性。我們使用3D Printing技術與微影加工技術 (BioMEMS) 製作具有不同幾何形狀與大小的母模,並以聚二甲基矽氧烷 (PDMS) 將其轉印下來形成細胞晶片,然後以甲殼素塗佈其表面並將 ASCs 種植於晶片中形成神經球。為確認 ASCs 分化成 NLCs 的最佳條件環境,本實驗以光學顯微鏡觀察於不同幾何形狀、深度和直徑所形成的細胞球大小,並以聚合酶連鎖反應 (Polymerase chain reaction) 及螢光免疫染色標定神經特定標誌,包括 Nestin、NeuN、GFAP,來觀察細胞球表現神經特定基因和蛋白的程度。由相位差影像結果可得知,培養於由 BioMEMS 構成之直徑0.5µm 高度0.4µm模板上之細胞球,可為細胞球培養微環境之最佳參數條件並形成單一細胞球於孔洞中。在基因及蛋白表現上,在細胞為數量3.6×105顆,其Nestin、NeuN、GFAP 表現量高於其他細胞密度組別。因此,我們成功地優化神經球培養條件並依此研發能夠有效形成單一大小且均一性高之神經球的細胞晶片。期望未來此晶片能應用於神經修復,以解決目前臨床所遇問題。
Neuroma and neuron scar usually follow nerve injury and hinder nerve regeneration. Recently, stem cell therapy has been proved to be a potential treatment for nerve repair. In our lab, we are able to isolate adipose derived stem cells (ASC) and seed the cells on chitosan-coated surfaces to form spheres which causing the cells undergo transdifferentiation into neural linage cells (NLCs). However, it remains challenging to form spheres with single size which then makes it impossible to observe the optimized condition to transdifferentiate ASCs. The study aims to fabricate biochips that are able to form single size spheres and then evaluate the characteristic of neural spheres formed in various condition. We shaped polydimethylsiloxane (PDMS) biochips with different geometries, heights and diameters by 3D printer and lithography processing technology and coated with chitosan. ASCs were seeded in the wells to form neurosphere. To aware the optimized condition to transdifferentiate ASCs into NLCs, light microscope was used to observe the regulation of well geometry, depth and diameter in sphere size. And attempts to change the seeding density to adjust the sphere size. In addition, RT-PCR and immunofluorescent staining were applied to evaluate expression of neural marker for spheres in different condition. Images took by light microscope indicated the possibility of forming spheres with uniform size, and the sphere size could be regulated by the microenvironmental condition and cell seeding density. In the expression of neural markers, seeding cell number 3.6×105, BioMEMS D=0.5, H=0.4 group has higher Nestin, NeuN, and GFAP gene and protein expression level as compared to other groups. In summary, we successfully optimized culture conditions for forming neurospheres and developed a cell biochip which can form single sphere with uniform size in a well. We expect this cell biochip can be used in promoting nerve regeneration.
Neuroma and neuron scar usually follow nerve injury and hinder nerve regeneration. Recently, stem cell therapy has been proved to be a potential treatment for nerve repair. In our lab, we are able to isolate adipose derived stem cells (ASC) and seed the cells on chitosan-coated surfaces to form spheres which causing the cells undergo transdifferentiation into neural linage cells (NLCs). However, it remains challenging to form spheres with single size which then makes it impossible to observe the optimized condition to transdifferentiate ASCs. The study aims to fabricate biochips that are able to form single size spheres and then evaluate the characteristic of neural spheres formed in various condition. We shaped polydimethylsiloxane (PDMS) biochips with different geometries, heights and diameters by 3D printer and lithography processing technology and coated with chitosan. ASCs were seeded in the wells to form neurosphere. To aware the optimized condition to transdifferentiate ASCs into NLCs, light microscope was used to observe the regulation of well geometry, depth and diameter in sphere size. And attempts to change the seeding density to adjust the sphere size. In addition, RT-PCR and immunofluorescent staining were applied to evaluate expression of neural marker for spheres in different condition. Images took by light microscope indicated the possibility of forming spheres with uniform size, and the sphere size could be regulated by the microenvironmental condition and cell seeding density. In the expression of neural markers, seeding cell number 3.6×105, BioMEMS D=0.5, H=0.4 group has higher Nestin, NeuN, and GFAP gene and protein expression level as compared to other groups. In summary, we successfully optimized culture conditions for forming neurospheres and developed a cell biochip which can form single sphere with uniform size in a well. We expect this cell biochip can be used in promoting nerve regeneration.
A Brayfield, C., K. G Marra and J. Peter Rubin (2010). "Adipose tissue regeneration." Current stem cell research & therapy 5(2): 116-121.
Ali, H. and H. Bahbahani (2010). "Umbilical cord blood stem cells–potential therapeutic tool for neural injuries and disorders." Acta Neurobiol Exp (Wars) 70(3): 316-324.
Amaral, I., A. Cordeiro, P. Sampaio and M. Barbosa (2007). "Attachment, spreading and short-term proliferation of human osteoblastic cells cultured on chitosan films with different degrees of acetylation." Journal of Biomaterials Science, Polymer Edition 18(4): 469-485.
Amaral, I., M. Lamghari, S. Sousa, P. Sampaio and M. Barbosa (2005). "Rat bone marrow stromal cell osteogenic differentiation and fibronectin adsorption on chitosan membranes: the effect of the degree of acetylation." Journal of Biomedical Materials Research Part A 75(2): 387-397.
Anderson, J. R., D. T. Chiu, H. Wu, O. Schueller and G. M. Whitesides (2000). "Fabrication of microfluidic systems in poly (dimethylsiloxane)." Electrophoresis 21(1): 27-40.
Anghileri, E., S. Marconi, A. Pignatelli, P. Cifelli, M. Galié, A. Sbarbati, M. Krampera, O. Belluzzi and B. Bonetti (2008). "Neuronal differentiation potential of human adipose-derived mesenchymal stem cells." Stem cells and development 17(5): 909-916.
Awad, H. A., M. Q. Wickham, H. A. Leddy, J. M. Gimble and F. Guilak (2004). "Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds." Biomaterials 25(16): 3211-3222.
Baharvand, H., S. M. Hashemi, S. K. Ashtiani and A. Farrokhi (2006). "Differentiation of human embryonic stem cells into hepatocytes in 2D and 3D culture systems in vitro." International Journal of Developmental Biology 50(7): 645.
Bao, N., Q. Zhang, J.-J. Xu and H.-Y. Chen (2005). "Fabrication of poly (dimethylsiloxane) microfluidic system based on masters directly printed with an office laser printer." Journal of Chromatography A 1089(1): 270-275.
Berger, J., M. Reist, J. M. Mayer, O. Felt and R. Gurny (2004). "Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications." European Journal of Pharmaceutics and Biopharmaceutics 57(1): 35-52.
Borenstein JT, V.-N. G. (2011). "Engineering Tissue with BioMEMS." IEEE 2(6).
Bunnell, B. A., M. Flaat, C. Gagliardi, B. Patel and C. Ripoll (2008). "Adipose-derived stem cells: isolation, expansion and differentiation." Methods 45(2): 115-120.
Campbell, T., C. Williams, O. Ivanova and B. Garrett (2011). "Could 3D printing change the world." Technologies, Potential, and Implications of Additive Manufacturing, Atlantic Council, Washington, DC.
Capulli, A. K., K. Tian, N. Mehandru, A. Bukhta, S. F. Choudhury, M. Suchyta and K. K. Parker (2014). "Approaching the in vitro clinical trial: engineering organs on chips." Lab Chip 14(17): 3181-3186.
Chaudhry, V., J. Glass and J. Griffin (1992). "Wallerian degeneration in peripheral nerve disease." Neurologic clinics 10(3): 613-627.
Croisier, F. and C. Jérôme (2013). "Chitosan-based biomaterials for tissue engineering." European Polymer Journal 49(4): 780-792.
Demetriou, A. A., R. S. Brown Jr, R. W. Busuttil, J. Fair, B. M. McGuire, P. Rosenthal, I. Jan Schulte Am Esch, J. Lerut, S. L. Nyberg and M. Salizzoni (2004). "Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure." Annals of surgery 239(5): 660-670.
Dontu, G., W. M. Abdallah, J. M. Foley, K. W. Jackson, M. F. Clarke, M. J. Kawamura and M. S. Wicha (2003). "In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells." Genes & development 17(10): 1253-1270.
Fan, Y., F. Cui, S. Hou, Q. Xu, L. Chen and I.-S. Lee (2002). "Culture of neural cells on silicon wafers with nano-scale surface topograph." Journal of neuroscience methods 120(1): 17-23.
Ferlin, K. M., M. E. Prendergast, M. L. Miller, D. S. Kaplan and J. P. Fisher (2016). "Influence of 3D printed porous architecture on mesenchymal stem cell enrichment and differentiation." Acta Biomater 32: 161-169.
Gimble, J. M., A. J. Katz and B. A. Bunnell (2007). "Adipose-derived stem cells for regenerative medicine." Circ Res 100(9): 1249-1260.
Gonçalves, S., A. Leirós, T. Van Kooten, F. Dourado and L. R. Rodrigues (2013). "Physicochemical and biological evaluation of poly (ethylene glycol) methacrylate grafted onto poly (dimethyl siloxane) surfaces for prosthetic devices." Colloids and Surfaces B: Biointerfaces 109: 228-235.
Gothait, H. (2001). Apparatus and method for three dimensional model printing, Google Patents.
Hamilton, G. A., C. Westmoreland and E. George (2001). "Effects of medium composition on the morphology and function of rat hepatocytes cultured as spheroids and monolayers." In Vitro Cellular & Developmental Biology-Animal 37(10): 656-667.
Hattori, F., H. Chen, H. Yamashita, S. Tohyama, Y.-s. Satoh, S. Yuasa, W. Li, H. Yamakawa, T. Tanaka and T. Onitsuka (2010). "Nongenetic method for purifying stem cell–derived cardiomyocytes." Nature methods 7(1): 61-66.
He, B., Q. Zhu, Y. Chai, X. Ding, J. Tang, L. Gu, J. Xiang, Y. Yang, J. Zhu and X. Liu (2015). "Safety and efficacy evaluation of a human acellular nerve graft as a digital nerve scaffold: a prospective, multicentre controlled clinical trial." Journal of tissue engineering and regenerative medicine 9(3): 286-295.
He, P., S. S. Davis and L. Illum (1998). "In vitro evaluation of the mucoadhesive properties of chitosan microspheres." International journal of pharmaceutics 166(1): 75-88.
Hsueh, Y. Y., Y. J. Chang, T. C. Huang, S. C. Fan, D. H. Wang, J. J. Chen, C. C. Wu and S. C. Lin (2014). "Functional recoveries of sciatic nerve regeneration by combining chitosan-coated conduit and neurosphere cells induced from adipose-derived stem cells." Biomaterials 35(7): 2234-2244.
Hsueh, Y. Y., Y. L. Chiang, C. C. Wu and S. C. Lin (2012). "Spheroid formation and neural induction in human adipose-derived stem cells on a chitosan-coated surface." Cells Tissues Organs 196(2): 117-128.
Huang, H.-C., Y.-J. Chang, W.-C. Chen, H. I.-C. Harn, M.-J. Tang and C.-C. Wu (2013). "Enhancement of renal epithelial cell functions through microfluidic-based coculture with adipose-derived stem cells." Tissue Engineering Part A 19(17-18): 2024-2034.
Hudson, T. W., G. R. Evans and C. E. Schmidt (2000). "Engineering strategies for peripheral nerve repair." Orthopedic Clinics 31(3): 485-497.
Ide, C. (1996). "Peripheral nerve regeneration." Neuroscience research 25(2): 101-121.
Ilkhanizadeh, S., A. I. Teixeira and O. Hermanson (2007). "Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation." Biomaterials 28(27): 3936-3943.
Jacobson, S. and L. Guth (1965). "An electrophysiological study of the early stages of peripheral nerve regeneration." Experimental neurology 11(1): 48-60.
Jivani, R. R., G. J. Lakhtaria, D. D. Patadiya, L. D. Patel, N. P. Jivani and B. P. Jhala (2016). "Biomedical microelectromechanical systems (BioMEMS): Revolution in drug delivery and analytical techniques." Saudi Pharmaceutical Journal 24(1): 1-20.
Kaigala, G. V., S. Ho, R. Penterman and C. J. Backhouse (2007). "Rapid prototyping of microfluidic devices with a wax printer." Lab on a Chip 7(3): 384-387.
Kelm, J. M., V. Djonov, L. M. Ittner, D. Fluri, W. Born, S. P. Hoerstrup and M. Fussenegger (2006). "Design of custom-shaped vascularized tissues using microtissue spheroids as minimal building units." Tissue engineering 12(8): 2151-2160.
Kim, J. A., H. N. Kim, S. K. Im, S. Chung, J. Y. Kang and N. Choi (2015). "Collagen-based brain microvasculature model in vitro using three-dimensional printed template." Biomicrofluidics 9(2): 024115.
Klokkevold, P. R., H. Fukayama, E. C. Sung and C. N. Bertolami (1999). "The effect of chitosan (poly-N-acetyl glucosamine) on lingual hemostasis in heparinized rabbits." Journal of oral and maxillofacial surgery 57(1): 49-52.
Kloxin, A. M., K. J. Lewis, C. A. DeForest, G. Seedorf, M. W. Tibbitt, V. Balasubramaniam and K. S. Anseth (2012). "Responsive culture platform to examine the influence of microenvironmental geometry on cell function in 3D." Integrative Biology 4(12): 1540-1549.
Konofaos, P. and J. Ver Halen (2013). "Nerve repair by means of tubulization: past, present, future." Journal of reconstructive microsurgery 29(3): 149-164.
Kumar, M. N. R. (2000). "A review of chitin and chitosan applications." Reactive and functional polymers 46(1): 1-27.
Lantada, A. D., J. L. Endrino, V. S. Vaquero, A. Mosquera, P. Lafont and J. P. García‐Ruiz (2012). "Tissue Engineering Using Novel Rapid Prototyped Diamond‐Like Carbon Coated Scaffolds." Plasma Processes and Polymers 9(1): 98-107.
Lee, A., A. Lee and S. E. Mackinnon (1988). Surgery of the peripheral nerve, New York: Thieme Medical Publishers.
Li, H., Y. Dai, J. Shu, R. Yu, Y. Guo and J. Chen (2015). "Spheroid cultures promote the stemness of corneal stromal cells." Tissue Cell 47(1): 39-48.
Lillehoj, P. B., H. Tsutsui, B. Valamehr, H. Wu and C.-M. Ho (2010). "Continuous sorting of heterogeneous-sized embryoid bodies." Lab on a Chip 10(13): 1678-1682.
Lin, R. Z. and H. Y. Chang (2008). "Recent advances in three‐dimensional multicellular spheroid culture for biomedical research." Biotechnology journal 3(9‐10): 1172-1184.
Lo, Y.-P., Y.-S. Liu, M. G. Rimando, J. H.-C. Ho, K.-h. Lin and O. K. Lee (2016). "Three-dimensional spherical spatial boundary conditions differentially regulate osteogenic differentiation of mesenchymal stromal cells." Scientific reports 6.
Lundborg, G. (2000). "A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance." The Journal of hand surgery 25(3): 391-414.
MacKay, S., D. Wishart, J. Z. Xing and J. Chen (2014). "Developing trends in aptamer-based biosensor devices and their applications." Biomedical Circuits and Systems, IEEE Transactions on 8(1): 4-14.
Marieb, E. N. (2003). Essentials of Human Anatomy & Physiology. Pearson Education, Inc. , Benjamin Cummings.
Martin, C., A. Llobera, T. Leichle, G. Villanueva, A. Voigt, V. Fakhfouri, J. Kim, N. Berthet, J. Bausells and G. Gruetzner (2008). "Novel methods to pattern polymers for microfluidics." Microelectronic Engineering 85(5): 972-975.
McDonald, J. C., M. L. Chabinyc, S. J. Metallo, J. R. Anderson, A. D. Stroock and G. M. Whitesides (2002). "Prototyping of microfluidic devices in poly (dimethylsiloxane) using solid-object printing." Analytical chemistry 74(7): 1537-1545.
Millesi, H., J. Ganglberger and A. Berger (1967). Erfahrungen mit der Mikrochirurgie peripherer Nerven. Chirurgia plastica et Reconstructiva, Springer: 47-55.
Moraes, C., G. Mehta, S. C. Lesher-Perez and S. Takayama (2012). "Organs-on-a-chip: a focus on compartmentalized microdevices." Annals of biomedical engineering 40(6): 1211-1227.
Ni, M., W. H. Tong, D. Choudhury, N. A. A. Rahim, C. Iliescu and H. Yu (2009). "Cell culture on MEMS platforms: A review." International journal of molecular sciences 10(12): 5411-5441.
Nicklin, J. (2004). "Disorders of nerve II: polyneuropathies." Physical management in neurological rehabilitation. Edinburgh: Elsevier-Mosby: 253-267.
Page, H., P. Flood and E. G. Reynaud (2013). "Three-dimensional tissue cultures: current trends and beyond." Cell and tissue research 352(1): 123-131.
Park, P.-J., J.-Y. Je, W.-K. Jung, C.-B. Ahn and S.-K. Kim (2004). "Anticoagulant activity of heterochitosans and their oligosaccharide sulfates." European Food Research and Technology 219(5): 529-533.
Pateman, C. J., A. J. Harding, A. Glen, C. S. Taylor, C. R. Christmas, P. P. Robinson, S. Rimmer, F. M. Boissonade, F. Claeyssens and J. W. Haycock (2015). "Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair." Biomaterials 49: 77-89.
Ranucci, C. S. and P. V. Moghe (2001). "Substrate microtopography can enhance cell adhesive and migratory responsiveness to matrix ligand density." Journal of biomedical materials research 54(2): 149-161.
Ratner, B. D. (1993). "Plasma deposition for biomedical applications: a brief review." Journal of Biomaterials Science, Polymer Edition 4(1): 3-11.
Rivron, N. C., E. J. Vrij, J. Rouwkema, S. Le Gac, A. van den Berg, R. K. Truckenmuller and C. A. van Blitterswijk (2012). "Tissue deformation spatially modulates VEGF signaling and angiogenesis." Proc Natl Acad Sci U S A 109(18): 6886-6891.
Saliterman, S. (2006). Fundamentals of BioMEMS and medical microdevices, SPIE press.
Sanna M. Peltolaa, F. P. W. M., Dirk W. Grijpmabc & Minna Kellomäkia (2008). "A review of rapid prototyping techniques for tissue engineering purposes." Annals of Medicine 40(4): 268-280.
Schmid, D. B. and A. N. Salyapongse (2008). "Nerve injury and repair." Current Orthopaedic Practice 19(5): 475-480.
Schmidt, C. E. and J. B. Leach (2003). "Neural tissue engineering: strategies for repair and regeneration." Annu Rev Biomed Eng 5: 293-347.
Shallan, A. I., P. Smejkal, M. Corban, R. M. Guijt and M. C. Breadmore (2014). "Cost-effective three-dimensional printing of visibly transparent microchips within minutes." Anal Chem 86(6): 3124-3130.
Stanton, M. M., R. E. Ducker, J. C. MacDonald, C. R. Lambert and W. G. McGimpsey (2012). "Super-hydrophobic, highly adhesive, polydimethylsiloxane (PDMS) surfaces." Journal of colloid and interface science 367(1): 502-508.
Steven S Saliterman (2005). "Education, bioMEMS and the medical microdevice revolution." Expert Review of Medical Device 2(5): 515-519.
Stoll, G., J. Griffin, C. Y. Li and B. Trapp (1989). "Wallerian degeneration in the peripheral nervous system: participation of both Schwann cells and macrophages in myelin degradation." Journal of neurocytology 18(5): 671-683.
Stoll, G. and H. W. Müller (1999). "Nerve injury, axonal degeneration and neural regeneration: basic insights." Brain pathology 9(2): 313-325.
Stroock, A. D. and G. M. Whitesides (2002). "Components for integrated poly (dimethylsiloxane) microfluidic systems." Electrophoresis 23(20): 3461-3473.
Tarang, Y. E. (2015). "3D PRINTING ADDITIVE MANUFACTURING." International Education and Research Journal 1(4): 21-23.
Tasoglu, S. and U. Demirci (2013). "Bioprinting for stem cell research." Trends in biotechnology 31(1): 10-19.
Thakare, M. G. V. and M. A. R. Nage (2014). "A REVIEW ON HIGH SENSITIVE BIOSENSOR USING MEMS."
Thomas, M. S., B. Millare, J. M. Clift, D. Bao, C. Hong and V. I. Vullev (2010). "Print-and-peel fabrication for microfluidics: what's in it for biomedical applications?" Ann Biomed Eng 38(1): 21-32.
Trounson, A., R. G. Thakar, G. Lomax and D. Gibbons (2011). "Clinical trials for stem cell therapies." BMC medicine 9(1): 52.
Tsuda, S., H. Jaffery, D. Doran, M. Hezwani, P. J. Robbins, M. Yoshida and L. Cronin (2015). "Customizable 3D Printed 'Plug and Play' Millifluidic Devices for Programmable Fluidics." PLoS One 10(11): e0141640.
Wang, J. J., Z. W. Zeng, R. Z. Xiao, T. Xie, G. L. Zhou, X. R. Zhan and S. L. Wang (2011). "Recent advances of chitosan nanoparticles as drug carriers." Int J Nanomedicine 6: 765-774.
Wang, W., K. Itaka, S. Ohba, N. Nishiyama, U.-i. Chung, Y. Yamasaki and K. Kataoka (2009). "3D spheroid culture system on micropatterned substrates for improved differentiation efficiency of multipotent mesenchymal stem cells." Biomaterials 30(14): 2705-2715.
Weibel, D. B., P. Garstecki and G. M. Whitesides (2005). "Combining microscience and neurobiology." Current opinion in neurobiology 15(5): 560-567.
Xu, F., B. Sridharan, S. Wang, U. A. Gurkan, B. Syverud and U. Demirci (2011). "Embryonic stem cell bioprinting for uniform and controlled size embryoid body formation." Biomicrofluidics 5(2): 022207.
Yuan, X., M. Zhou, J. Gough, A. Glidle and H. Yin (2015). "A novel culture system for modulating single cell geometry in 3D." Acta biomaterialia 24: 228-240.