| 研究生: |
邵方璵 Shao, Fang-Yu |
|---|---|
| 論文名稱: |
不同基材軟硬度其區域黏著激酶之表現對細胞黏著力的影響 Involvement of Focal Adhesion Kinase in cell Adhesion Force on Different Substrate Rigidity |
| 指導教授: |
蘇芳慶
Su, Fong-Chin 葉明龍 Yeh, Min-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 上皮細胞 、區域黏著激酶 、細胞黏著力 、基材軟硬度 |
| 外文關鍵詞: | focal adhesion kinase, cell adhesion force, substratum rigidity, epithelial cell |
| 相關次數: | 點閱:128 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細胞生長在微小的環境中,其力學及生化特性對細胞生長及功能表現扮演相同重要的角色。細胞黏著是影響細胞功能行為的重要因子,如細胞型態、細胞貼附、細胞移動、細胞運動及分化等,同時也是組織工程中形成組織結構及整合細胞與生物材料最重要的一步。黏著行為會受到細胞本身生理調控及外界環境的影響,透過區域黏著增加細胞與基材間的黏著能力;區域黏著蛋白酶(FAK)是細胞中的蛋白質,細胞即透過FAK的調控與細胞外基質接觸並形成黏著點(FAs),而細胞生長微環境中不同的基材硬度會影響細胞的功能,如細胞凋亡(apoptosis)、細胞分化(differentiation)、及癌細胞轉移(cancer invasion)。本研究將利用聚丙烯醯胺膠体(polyacrylamide gel)製成三種軟硬度不同的基材(1000Pa、33800Pa、玻璃基材),利用細胞黏著力刮取機構及螢光觀測系統,探討細胞內FAK於不同硬度基材之表現對細胞黏著力的影響。本研究假設FAK為細胞中主要感測基材硬度的因子,選用三種不同特性的極性上皮細胞MDCK來釐清FAK的功能,分別為控制組(Vector control)、FAK基因過度表現組(FAK-WT)及無表現組(FRNK)。實驗結果顯示,細胞面積、細胞黏著力及刮取所需總能量-功,皆隨著基材硬度的增加而增加;過度表現FAK和無表現FAK兩組間,除了細胞面積和標準化後的黏著力外,其他參數皆有顯著差異;區域黏著蛋白酶於30kPa及1kPa基材上,能促進細胞攤附並增加對面積做標準化後的細胞黏著力,於三種硬度上,能增加細胞黏著力。本研究對FAK於不同基材上發揮的效益定義一個AI (affecting index)比,AI比值愈大表示FAK的效益愈大:於玻璃和30kPa的基材上,細胞黏著力及功之AI值相近,最大值發生在1Kpa軟性基材上,而細胞攤附面積之AI值於三種硬度的基材上幾乎相同;過度表現FAK基因的細胞,其AI值和基材硬度呈反比,無表現FAK的細胞則與基材硬度呈正比,推論FAK於較硬的基材上其效益比在軟性基材上來得小。
Both biochemical and mechanical properties of the microenvironment are equally important for cell growth and functional expression. Cell adhesion not only plays a critical role in cell physiology functions including morphology, spreading, migration, and differentiation, but also a critical step in the tissue engineering approach for maintenance of tissue structure and cell integration of biomaterial. The adhesion between cell-ECM is affected by intracellular regulations and extracellular environment, and is strengthened through focal adhesions. The focal adhesion kinase (FAK) at focal adhesions (FAs) is the major part for cell binding to the extracellular matrix (ECM). The substrate rigidity is playing an important factor for various cell behaviors, such as apoptosis, differentiation, and cancer invasion. In present study, we plate MDCK epithelial cell on glass surface, 1kPa, and 30kPa polyacrylamide gels, respectively. The FAK expression for substrate rigidity sensing and adhesion force management will be sty cytodetachment device and fluorescent microscopy. We hypothesize that FAK is the rigidity sensor in response to different rigidity of substrates. Different expression levels of FAK by gene Overexpression (FAK-WT) and knock-out (FRNK) will be also used to probe the function of FAK in rigidity sensing. The results indicate that cell spreading area, adhesion force, and work are increasing with increasing substrate rigidity. Except for cell area and normalized adhesion force, all parameters reach significantly different between FAK-WT and FRNK cells. FAK can enhance cell spreading and increase the normalized adhesion force on 30kPa and 1kPa gels. On three kinds of substrate rigidity, FAK can enhance adhesion force. We define a ratio of affecting index (AI) between FAK-WT, control and FRNK. Control, respectively. The AI ration means the effect of FAK on different substrate rigidity, the higher value of AI and the stronger effect of FAK. The AI ratio of adhesion force in glass dish and 30kPa gel are approximate the same, and the highest value occurs in 1kPa gel. The AI ratio of cell area is almost no difference between three kinds of substrate rigidity. Moreover, the affecting index of FAK-WT is inversely proportional to the substrate rigidity, but proportional to the substrate rigidity in FRNK cell. We suggest that the effect of FAK is weaker on stiffer substrate than on softer matrix.
1.Abbi S, Guan JL. "Focal adhesion kinase: protein interactions and cellular functions." Histol Histopathol 17(4): 1163-71. (2002).
2.Adams JC. "Cell-matrix contact structures." Cellular and Molecular Life Sciences 58: 371-392. (2001).
3.Anselme K. "Osteoblast adhesion on biomaterials." Biomaterials 21(7): 667-681. (2000).
4.Ashkin A. "Acceleration and Trapping of Particles by Radiation Pressure." Physical Review Letters 24(4): 156. (1970).
5.Burridge K, Chrzanowska-Wodnicka M. "Focal adhesions, contrctility, and signaling." Annual Review of Cell and Developmental Biology 12(1): 463-519. (1996).
6.Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. "Geometric Control of Cell Life and Death." Science 276(5317): 1425-1428. (1997).
7.Chrzanowska-Wodnicka M, Burridge K. "Rho-stimulated contractility drives the formation of stress fibers and focal adhesions." J. Cell Biol. 133(6): 1403-1415. (1996).
8.Cotran RS, Kumar V, Collins T. Robbins Pathologic Basis of Disease. W. B. Saunders, Philadelphia, 1999.
9.Discher DE, Janmey P, Wang YL. "Tissue cells feel and respond to the stiffness of their substrate." Science 310(5751): 1139-43. (2005).
10. Dufreüne YF, Boland T, Schneider JW, Barger WR, Lee GU. "Characterization of the physical properties of model biomembranes at the nanometer scale with the atomic force microscope." Faraday Discuss 111: 79-94. (1998).
11. Dufrene YF, Boland T, Schneider JW, Barger WR, Lee GU. "Characterization of the physical properties of model biomembranes at the nanometer scale with the atomic force microscope." Faraday Discuss (111): 79-94; discussion 137-57. (1998).
12. Engler AJ, Griffin MA, Sen S, Bonnemaann CG, Sweeney HL, Discher DE. "Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments." J. Cell Biol. 166(6): 877-887. (2004).
13. Gallant ND, Michael KE, Garcia AJ. "Cell adhesion strengthening: contributions of adhesive area, integrin binding, and focal adhesion assembly." Mol Biol Cell 16(9): 4329-40. (2005).
14. Garcia AJ, Ducheyne P, Boettiger D. "Quantification of cell adhesion using a spinning disc device and application to surface-reactive materials." Biomaterials 18(16): 1091-1098. (1997).
15. Geiger B, Bershadsky A, Pankov R, Yamada KM. "Transmembrane crosstalk between the extracellular matrix and the cytoskeleton." Nat Rev Mol Cell Biol 2(11): 793-805. (2001).
16. Georges PC, Janmey PA. "Cell type-specific response to growth on soft materials." J Appl Physiol 98(4): 1547-53. (2005).
17. Giannone G, Sheetz MP. "Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways." Trends Cell Biol 16(4): 213-23. (2006).
18. Gilmore AP, Romer LH. "Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation." Mol Biol Cell 7(8): 1209-24. (1996).
19. Guo W-h, Frey MT, Burnham NA, Wang Y-l. "Substrate Rigidity Regulates the Formation and Maintenance of Tissues." Biophys. J. 90(6): 2213-2220. (2006).
20. Hoben G, Huang W, Thoma BS, LeBaron RG, Athanasiou KA. "Quantification of varying adhesion levels in chondrocytes using the cytodetacher." Ann Biomed Eng 30(5): 703-12. (2002).
21. Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, Nomura S, Fujimoto J, Okada M, Yamamoto T, AizawaShinichi. "Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice." Nature 377(6549): 539-544. (1995).
22. Ilic D, Kanazawa S, Furuta Y, Yamamoto T, Aizawa S. "Impairment of Mobility in Endodermal Cells by FAK Deficiency." Experimental Cell Research 222(2): 298-303. (1996).
23. Janmey PA, Yeung T, Flanagan LA. "Effect of substrate stiffness on cell morphology " Bioengineering Conference 50. (2001).
24. Katsumi A, Orr AW, Tzima E, Schwartz MA. "Integrins in Mechanotransduction." J. Biol. Chem. 279(13): 12001-12004. (2004).
25. Kuo SC. "Using Optics to Measure Biologics Forces and Mechanics." Munksgaard International Publishers 2: 757-763. (2001).
26. Leader WM, Stopak D, Harris AK. "Increased contractile strength and tightened adhesions to the substratum result from reverse transformation of CHO cells by dibutyryl cyclic adenosine monophosphate." J Cell Sci 64(1): 1-11. (1983).
27. Lee C-C, Wu C-C, Su F-C. "The Technique for Measurement of Cell Adhesion Force." Journal of Medical and Biological Engineering 24(1): 51-56. (2004).
28. Levental I, Georgesa PC, Janmey PA. "Soft biological materials and their impact on cell function." Soft Matter 3: 299-306. (2007).
29. Li S, Butler P, Wang Y, Hu Y, Han DC, Usami S, Guan J-L, Chien S. "The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells." Proceedings of the National Academy of Sciences 99(6): 3546-3551. (2002).
30. Mitra SK, Hanson DA, Schlaepfer DD. "Focal adhesion kinase: in command and control of cell motility." Nat Rev Mol Cell Biol 6(1): 56-68. (2005).
31. Owen JD, Ruest PJ, Fry DW, Hanks SK. "Induced Focal Adhesion Kinase (FAK) Expression in FAK-Null Cells Enhances Cell Spreading and Migration Requiring Both Auto- and Activation Loop Phosphorylation Sites and Inhibits Adhesion-Dependent Tyrosine Phosphorylation of Pyk2." Mol. Cell. Biol. 19(7): 4806-4818. (1999).
32. Parsons JT, Martin KH, Slack JK, Taylor JM, Weed SA. "Focal Adhesion Kinase: a regulator of focal adhesion dynamics and cell movement." Oncogene 19: 5606-5613. (2000).
33. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM. "Tensional homeostasis and the malignant phenotype." Cancer Cell 8(3): 241-254. (2005).
34. Pelham RJ, Jr., Wang Y. "Cell locomotion and focal adhesions are regulated by substrate flexibility." Proc Natl Acad Sci U S A 94(25): 13661-5. (1997).
35. Polte TR, Eichler GS, Wang N, Ingber DE. "Extracellular matrix controls myosin light chain phosphorylation and cell contractility through modulation of cell shape and cytoskeletal prestress." Am J Physiol Cell Physiol 286(3): C518-528. (2004).
36. Price LS, Leng J, Schwartz MA, Bokoch GM. "Activation of Rac and Cdc42 by Integrins Mediates Cell Spreading." Mol Biol Cell 9(7): 1863–1871. (1998).
37. Richardson A, Malik RK, Hildebrand JD, Parsons JT. "Inhibition of Cell Spreading by Expression of the C-Terminal Domain of Focal Adhesion Kinase (FAK) Is Rescued by Coexpression of Src or Catalytically Inactive FAK: a Role for Paxillin Tyrosine Phosphorylation." Mol Cell Biol. 17(12): 6906–6914. (1997).
38. Sagvolden G, Giaever I, Pettersen EO, Feder J. "Cell adhesion force microscopy." Proc Natl Acad Sci U S A 96(2): 471-6. (1999).
39. Schlunck G, Han H, Wecker T, Kampik D, Meyer-ter-Vehn T, Grehn F. "Substrate rigidity modulates cell matrix interactions and protein expression in human trabecular meshwork cells." Invest Ophthalmol Vis Sci 49(1): 262-9. (2008).
40. Tanaka K. "The protein-destroying machinery." Gan To Kagaku Ryoho 35(1): 6-10. (2008).
41. Van Vliet KJ, Bao G, Suresh S. "The biomechanics toolbox: experimental approaches for living cells and biomolecules." Acta Materialia 51: 5881-5905. (2003).
42. Wang CZ, Hsu YM, Tang MJ. "Function of discoidin domain receptor I in HGF-induced branching tubulogenesis of MDCK cells in collagen gel." J Cell Physiol 203(1): 295-304. (2005).
43. Wang H-B, Dembo M, Hanks SK, Wang Y-l. "Focal adhesion kinase is involved in mechanosensing during fibroblast migration." Proceedings of the National Academy of Sciences 98(20): 11295-11300. (2001).
44. Wang Y-K, Wang Y-H, Wang C-Z, Sung J-M, Chiu W-T, Lin S-H, Chang Y-H, Tang M-J. "Rigidity of Collagen Fibrils Controls Collagen Gel-induced Down-regulation of Focal Adhesion Complex Proteins Mediated by {alpha}2{beta}1 Integrin." J. Biol. Chem. 278(24): 21886-21892. (2003).
45. Wang YH, Chiu WT, Wang YK, Wu CC, Chen TL, Teng CF, Chang WT, Chang HC, Tang MJ. "Deregulation of AP-1 proteins in collagen gel-induced epithelial cell apoptosis mediated by low substratum rigidity." J Biol Chem 282(1): 752-63. (2007).
46. Wang YK, Lin HH, Tang MJ. "Collagen gel overlay induces two phases of apoptosis in MDCK cells." Am J Physiol Cell Physiol 280(6): C1440-8. (2001).
47. Wozniak MA, Modzelewska K, Kwong L, Keely PJ. "Focal adhesion regulation of cell behavior." Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1692(2-3): 103-119. (2004).
48. Wu C-C, Su H-W, Lee C-C, Tang M-J, Su F-C. "Quantitative measurement of changes in adhesion force involving focal adhesion kinase during cell attachment, spread, and migration." Biochemical and Biophysical Research Communications 329(1): 256-265. (2005).
49. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA. "Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion." Cell Motil Cytoskeleton 60(1): 24-34. (2005).