簡易檢索 / 詳目顯示

研究生: 林哲榆
Lin, Che-Yu
論文名稱: 以非晶質氮化鋁為支撐層之薄膜型塊體聲波共振器的研究
Investigation of Thin Film Bulk Acoustic-wave Resonators Using Amorphous AlN as Supporting Layers
指導教授: 李炳鈞
Li, Bing-Jing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 71
中文關鍵詞: 薄膜型塊體聲波共振器氮化鋁支撐層
外文關鍵詞: supporting layer, FBAR, AlN
相關次數: 點閱:87下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分析與研製薄膜塊體聲波共振器(Film Bulk Acoustic-wave Resonator, FBAR),FBAR的結構為在矽基板上以白金為底電極,鋁為上電極,以反應式射頻磁控濺鍍機成長高C軸優選取向的氮化鋁薄膜,以激發出縱波並於薄膜表面處產生反射。本論文的FABR結構為背向蝕刻矽基板產生聲波空腔,使元件於氮化鋁薄膜內產生奇、偶數模態的串聯共振頻率和並聯共振頻率。
    實驗為探討之對象為以非晶質氮化鋁(amorphous AlN)為支撐層之FBAR元件,探討支撐層厚度對元件的影響,發現當支撐層厚度較小時,其輸入阻抗較低,而有效機電耦合係數較大,Q值較小,而基頻向低頻漂移。除此之外,也探討改變電極面積的寬長比(Aspect Ratio)對元件的影響,當寬長比最大時,可得之元件的k2eff值最大而Q值最小。利用ADS模擬軟體可以萃取FBAR元件於基頻共振頻率的MBVD等效電路參數值,調整矽基板的寄生電容與電阻效應,可使模擬值與量測值接近,因而可和有效機電耦合係數k2eff 、Q值作一比較。

    The paper presents the analysis and fabrication of thin film bulk acoustic wave resonator(FBAR). The FBAR structures are made of piezoelectric aluminum nitride layers on silicon wafer using the technique of RF magnetron sputtering. Aluminum and platinum are used as the top and bottom electrodes, respectively. The excited longitudinal bulk wave in the highly C-axis-oriented piezoelectric AlN film can bounce from the surface boundaries of the AlN membrane. Similar to an acoustical cavity, the FBAR structure exhibits parallel and series electrical resonance responses which correspond to even- and odd-order modes, respectively. The subject of the research is to use the amorphous AlN as the supporting layer for the FBAR devices and discuss the effect of the thickness of the amorphous AlN on the properties of the FBAR devices. The results show that input impedance (Zin) ,quality factor (Q) are decreasing while effective electromechanical coupling coefficient(k2eff) is increasing as the thickness of amorphous AlN is decreasing. The effect of the aspect ratio of the electrode on the FBAR devices is also presented. We find that the value of the Q factor decreases and increases when the aspect ratio of the electrode increases. The Modified Butterworth-Van Dyke model based on the fundamental resonant frequency response of resonators is used for the analysis of the FBAR structure. The resonant frequencies, effective electromechanical coupling coefficients(k2eff) and quality factors from the modeling method and experiments will be compared and discussed.

    博碩士論文授權書...........................................................I 口試合格證明中文...........................................................II 口試合格證明英文...........................................................III 中文摘要...................................................................IV 英文摘要...................................................................V 誌謝.......................................................................VII 目錄.......................................................................VIII 表目錄.....................................................................X 圖目錄.....................................................................XI 目錄 第一章 序論 ……………………………….......1 1.1研究背景與動機..........................1 1.2論文架構................................7 第二章 FBAR的理論設計與製程原理…………………..7 2.1 聲波運動方程式………………………………….7 2.2壓電效應…………………………………………...11 2.3 壓電薄膜特性……………………………………15 2.4 Modified BVD等效電路模型…………………...17 2.5 薄膜體聲波共振器原理…………………………19 2.6 反應式離子蝕刻原理………………………………23 2.7 反應性射頻磁控濺鍍原理……………………...23 2.8 X光繞射原理…………….………………………25 2.8.1布拉格定律………..……………………...…25 2.8.2 X光繞射分析方法………………………26 第三章 研究方法與步驟……………………………28 3.1 FBAR製程步驟………………………………….28 3.1.1標準RCA清洗…………………………………28 3.1.2Amorphous AlN薄膜沉積………………….29 3.1.3 蝕刻窗製作…………………………………29 3.1.4底電極沉積………………………………...29 3.1.5濺鍍氮化鋁薄膜………………………………30 3.1.6上電極沉積…………………………………..30 3.1.7蝕刻氮化鋁薄膜………………………………30 3.1.8 RIE蝕刻空腔…………………………………31 3.2 氮化鋁薄膜品質分析…………………………31 3.3 FBAR元件量測………………………………….31 3.3.1全雙埠校正..............................32 3.4 FBAR元件設計…………………………………….32 第四章 實驗結果與討論………………………………34 4.1 氮化鋁薄膜分析………………………………...34 4.1.1濺鍍上下電極……………………………………34 4.1.2濺鍍非晶質氮化鋁…………………………………34 4.1.3濺鍍壓電層氮化鋁..........................37 4.1.3.1射頻濺鍍功率的影響......................37 4.1.3.2氮氣濃度的影響..........................40 4.1.3.3沉積氮化鋁及非晶質氮化鋁的速率..........43 4.1.4蝕刻聲波空腔及元件的SEM分析...............43 4.2元件量測結果與討論..........................49 4.2.1 殘存矽基板的影響.........................49 4.2.2 支撐層厚度的影響.........................49 4.2.3 電極面積寬長比的影響.....................50 4.2.4 元件模擬及等效電路建立..................50 4.3 結論......................................62 第五章 未來展望..............................64 參考文獻.....................................68 表目錄 表1-1 陶瓷濾波器、表面聲波濾波器、FBAR濾波器比較..............................................4 表1-2 支撐層材料特性之比較......................4 表2-1 壓電材料、電極、空氣的聲波阻抗值.........10 表2-2 e、h、d、g壓電參數的定義.................12 表2-3 氮化鋁的壓電參數值.......................14 表2-4 FBAR壓電材料特性表.......................16 表2-5 氮化鋁的JCPDS卡粉末繞射表................27 表3-1 氮化鋁濺鍍參數表.........................30 表3-2 元件面積規格 .............................32 表3-3 元件支撐層厚度規格.......................33 表4-1 Amorphous AlN 的濺鍍條件.................35 表4-2 Amorphous AlN EDS 數值表.................36 表4-3 探討射頻濺鍍功率對氮化鋁薄膜成長的參數..37 表4-4 探討氮氣濃度對氮化鋁薄膜成長的參數.......41 表4-5 支撐層厚度不同的量測表...................54 表4-6 支撐層厚度不同的Q值及k2eff表.............56 表4-7 寬長比不同的Q值及k2eff表.................59 表4-8面積為100μm×100100μm,C軸取向AlN約2μm,支撐層厚度0.3μm之 MBVD等效電路參數表........................... 61 圖目錄 圖1-1 FBAR元件不同材料支撐層的結構圖...........5 圖1-1 (a)Backside etching FBAR(b)Air-gap type FBAR(c) SMR結構圖..............................6 圖1-2 FBAR濾波器(a)疊層晶體濾波器上視圖 (b)階梯結構濾波器上視圖.................................6 圖2-1 彈性體內粒子位移示意圖...................7 圖2-2 聲波於空氣及壓電層介面處的聲波反射情形示意圖............................................10 圖2-3 氮化鋁晶體的振動........................11 圖2-4氮化鋁結構圖.............................15 圖2-5 FBAR等效電路(a)BVD模型 (b)MBVD模型......17 圖2-6 串聯共振頻率 時的場型分佈圖.............18 圖2-7並聯共振頻率 時的場型分佈圖..............19 圖2-8 氮化鋁內縱波產生TE模態的情形............21 圖2-9 本實驗FBAR結構圖(a) FBAR元件結構(b) CPW的S與G的高度差引起的特徵阻抗值改變...............21 圖2-10 FBAR輸入阻抗值對頻率響應圖(a)虛部阻抗值於共振點時的變化(b)輸入阻抗值於共振點時的變化...22 圖2-11 與壓電層和殘餘矽基板厚度比例對共振器共振模態的影響....................................22 圖2-12 射頻磁控濺鍍系統圖.....................25 圖2-13 X射線繞射圖 ............................25 圖3-1 FBAR製程流程圖示........................28 圖3-2GSG共平面探針量測FBAR元件................31 圖3-3 於ISS上進行SOLT校正.....................32 圖4-1 Amorphous AlN 的XRD 撓射圖..............35 圖4-2 Amorphous AlN 的側視圖..................36 圖4-3 Amorphous AlN EDS 分析..................36 圖4-4 不同濺鍍功率下成長氮化鋁薄膜XRD繞射圖...38 圖4-5不同濺鍍功率下成長氮化鋁薄膜其FWHM值.....38 圖4-6不同功率下成長氮化鋁薄膜SEM圖(a)250W(b)300W(c)350W(d)400W................................40 圖4-7 不同氮氣濃度下濺鍍氮化鋁的XRD圖.........41 圖4-8不同氮氣濃度下濺鍍氮化鋁的FWHM值.........42 圖4-9 氮氣濃度57.5%,功率350W的SEM圖..........42 圖4-10 (a)amorphous AlN 沉積速率..............43 (b)C軸取向 AlN 沉積速率.......................43 圖4-11.a 空腔蝕刻15分.........................44 圖4-11.b 空腔蝕刻76分.........................45 圖4-11.c空腔蝕刻155分.........................45 圖4-11.d空腔的側視圖..........................46 圖4-11.e C軸取向AlN 側視圖....................46 圖4-11.f 空腔上方的薄膜.......................47 圖4-11.g 元件的側視圖.........................47 圖4-11.h FBAR元件的上視圖....................48 圖4-12 元件空腔內殘留Si厚度的SEM圖 (a)180μm (b)25μm (c)14μm (d)1μm(e)0μm.......................52 圖4-13 不同支撐層厚度的阻抗圖(a) 0.3μm(b) 0.6μm (c) 0.9μm (d) 1.2μm............................52 圖4-14 不同支撐層厚度的S11圖(a) 0.3μm(b) 0.6μm (c) 0.9μm (d) 1.2μm............................53 圖4-15 不同支撐層厚度的S21圖(a) 0.3μm(b) 0.6μm (c) 0.9μm (d) 1.2μm............................53 圖4-16 支撐層厚度不同與共振頻率的關係圖........54 圖4-17 支撐層厚度不同與k2eff的關係圖 ...........55 圖4-18 100μm×100μm壓電層2μm支撐層0.3μm的Q值圖 ..55 圖4-19 支撐層厚度不同與Q值的關係圖............56 圖4-20(a)ASR 1 (b)ASR 0.4096 (c)ASR 0.25 (d)ASR 0.16..........................................57 圖4-21 寬長比不同的阻抗圖(a)1(b)0.4096(c)0.25(d)0.16...........................................58 圖4-22 寬長比不同與Q值的關係圖................58 圖4-23 寬長比不同與k2eff的關係圖..............59 圖4-24 寬長比不同與Q值的關係圖................59 圖4-25 寬長比不同與共振頻率的關係圖...........59 圖4-26 S端高度與W/S變化對CPW的特徵阻抗值變化圖............................................60 圖4-27 CPW模擬電場分佈圖,W=50,S=100(單位μm)............................................60 圖4-28面積為100μm×100100μm,C軸取向AlN約2μm支撐層厚度0.3μm之模擬與量測比較圖(a)MBVD電路模擬值與量測值的比較(b)元件S11模擬與量測的smith.........61 圖5-1 FBAR元件與作De-embedding用的虛擬元件....65 圖5-2 FBAR應用於生醫植入感測器圖..............65 圖5-3 階梯形濾波器(a)等效電路圖(b)Agilent FBAR Filter........................................66 圖5-4 FBAR 振盪器之電路圖....................67

    [1] 陶有福,戴建雄, "薄膜體聲波濾波器剖析與測試," 工研院材料所微感測器實驗室,2004
    [2] 劉永宏, "氮化鋁薄膜體聲波共振器分析與研製(Analysis and Fabrication of AlN Thin Film Bulk Acoustic Wave Resonator)," in 電機所. 台灣: 國立成功大學, 2004, pp.1-3.
    [3] C. M. Yang, K. Uehara, Y. Aota, S. K. Kim, S. Kameda, H. Nakase, Y. Isota, and K. Tsubouchi, "Growth of AlN film on Mo/SiO/sub 2//Si (111) for 5 GHz-band FBAR using MOCVD," 2004.
    [4] J. Y. Park, H. M. Lee, H. C. Lee, K. H. Lee, Y. J. Ko, J. H. Shin, S. H. Moon, and J. U. Bu, "Comparison of micromachined FBAR band pass filters with different structural geometry," 2003.
    [5] R. C. Ruby, P. Bradley, Y. Oshmyansky, A. Chien, and J. D. Larson, III, "Thin film bulk wave acoustic resonators (FBAR) for wireless applications," 2001.
    [6] T. Nishihara, T. Yokoyama, T. Miyashita, and Y. Satoh, "High performance and miniature thin film bulk acoustic wave filters for 5 GHz," 2002.
    [7] B. P. Otis and J. M. Rabaey, "A 300-/spl mu/W 1.9-GHz CMOS oscillator utilizing micromachined resonators," Solid-State Circuits, IEEE Journal of, vol. 38, pp. 1271-1274, 2003.
    [8] P. Bradley, R. Ruby, J. D. Larson, III, Y. Oshmyansky, and D. Figueredo, "A film bulk acoustic resonator (FBAR) duplexer for USPCS handset applications," 2001.
    [9] K. Dong-Hyun, Y. Munhyuk, C. Dongkyu, and G. Yoon, "Improvements of resonance characteristics due to thermal annealing of Bragg reflectors in ZnO-based FBAR devices," Electronics Letters, vol. 39, pp. 962-964, 2003.
    [10] K.-W. Tay, C.-L. Huang, L. Wu, and M.-S. Lin, "Performance Characterization of Thin AlN Films deposited on Mo Electrode for Thin-Film Bulk Acoustic-Wave Resonators," Japanese Journal of Applied Physics, vol. 43, pp. 5510-5515, 2004.
    [11] J. D. Larson, III, J. D. Ruby, III, R. C. Bradley, J. Wen, K. Shong-Lam, and A. Chien, "Power handling and temperature coefficient studies in FBAR duplexers for the 1900 MHz PCS band," 2000.
    [12] M. Hara, J. Kuypers, and M. Esashi, "Surface micromachined AlN thin film 2GHz resonator for CMOS integration," Sensors and Actuators, pp. pp.211-216, 2005.
    [13] R. Aigner, J. Ella, H. J. Timme, L. Elbrecht, W. Nessler, and S. Marksteiner, "Advancement of MEMS into RF-filter applications," 2002.
    [14] R. B. Stokes and J. D. Crawford, "X-band thin film acoustic filters on GaAs," Microwave Theory and Techniques, IEEE Transactions on, vol. 41, pp. 1075-1080, 1993.
    [15] H. Kanbara, H. Kobayashi, and K. Nakamura, "Analysis of Piezoelectric Thin Film Resonators with Acoustic Quarter-Wave Multilayers," presented at Jpn. J. Appl. Phys, 2000.
    [16] K. M. Lakin and J. S. Wang, "Acoustic bulk wave composite resonators," Applied Physics Letters, vol. 38, pp. 125-127, 1981.
    [17] F. ENEGRLMARK, "AlN and High-k Thin Film for IC and Electroacoustic Applications," ACTA UNIVERSITATIS UPSALIENSIS, 2002.
    [18] C. Qingming, S. Tongying, and W. Qing-Ming, "Materials property dependence of the effective electromechanical coupling coefficient of thin film bulk acoustic resonators," 2004.
    [19] S.-H. Leeab, K. H. Yoonb, D.-S. Cheonga, and J.-K. Leea*, "Relationship between residual stress and structural properties of AlN
    films deposited by r.f. reactive sputtering," Thin Solid Films pp. p193-198, 2003.
    [20] F. Hasegawa, T. Takahashi, K. Kubo, and Y. Nannichi, "Plasma CVD of Amorphous AlN from Metalorganic Al Source and Properties of the Deposited Films," Jpn. J. Appl. Phys, vol. 26, pp. P1555-1560, 1987.
    [21] 陳怡誠, "高介電薄膜簡介," 2002.
    [22] K.-W. TAY, "The Analysis and Design of Film Bulk Acoustic Wave Resonators," in Electrical Engineering. Taiwan: National Cheng Kung University, 2005, pp. pp.34-35.
    [23] Morito Akiyamaa, K. Nagaob, N. Uenoa, H. Tateyamaa, and T. Yamadab, "Influence of metal electrodes on crystal orientation of aluminum nitride thin films," Vacuum, vol. 74, pp. 699-703, 2004.
    [24] Z. Hao and K. Eun Sok, "Air-backed Al/ZnO/Al film bulk acoustic resonator without any support layer," 2002.
    [25] C. C. Cheng, Y. C. Chen, H. J. Wang, and W. R. Chen, "Low temperature growth of piezoelectric AlN film by rf reactive planar magnetron sputtering.pdf," Journal of Vacuum Science and Technology, vol. 14, pp. 2238-2242, 1996.
    [26] P. Wei, Y. Hongyu, Z. Hao, and K. Eun Sok, "Temperature-compensated film bulk acoustic resonator above 2 GHz," Electron Device Letters, IEEE, vol. 26, pp. 369-371, 2005.
    [27] J. F. Rosenbaum, Bulk Acoustic Wave Theory and Devices. London England: Artech House, 1998.
    [28] K.-W. Tay, C.-L. Huang, and L. Wu, "Influence of Piezoelectric Film and Electrode Materials on Film Bulk Acoustic-Wave Resonator Characteristics," presented at Japanese Journal of Applied Physics, 2003.
    [29] 吳朗, 電子陶瓷-壓電. 台灣: 全欣圖書公司, 1994.
    [30] G. H. Kim, M. J. Keum, H. I. Seo, D. S. Park, J. B. Lee, and K. H. Kim, "Crystallographic characteristics and effective electromechanical coupling coefficients of AlN thin films for FNAR applications," 2003.
    [31] J. A. Ruffner, P. G. Clem, B. A. Tuttle, D. Dimos, and D. M. Gonzales, "Effect of substrate composition on the piezoelectric response of reactively sputtered AlN thin films," Thin Solid Films, vol. 346, pp. 256-261, 1999.
    [32] C. L. Aardahl, J. W. R. Jr., Y. O. H. K. Yun, D. J. Tweet, and S. T. Hsu, "Electrical properties of AlN thin films deposited at low temperature on
    Si(100)," Thin Solid Films, vol. 346, pp. 174-180, 1999.
    [33] T. E. Kolding, "General accuracy considerations of microwave on-wafer silicon device measurements," 2000.
    [34] T. E. Kolding, "Impact of test-fixture forward coupling on on-wafer silicon device measurements," Microwave and Guided Wave Letters, IEEE [see also IEEE Microwave and Wireless Components Letters], vol. 10, pp. 73-74, 2000.
    [35] M. B. Assouar*, O. Elmazria, L. L. Brizoual, and P. Alnot, "Reactive DC magnetron sputtering of aluminum nitride films for surface
    acoustic wave devices," Diamond and Related Materials, vol. 11, pp. 413-417, 2002.
    [36] R. N. SIMONS, COPLANAR WAVEGUIDE CIRCUITS,COMPONENTS, AND SYSTEMS, vol. 1-57: WILEY INTERSCIENCE, 2001.
    [37] 施敏, SEMICONDUCTOR DEVICES Physics and Technology. Taiwan: 國立交通大學出版社, 2001.
    [38] H. XIAO, INTRODUCTION TO SEMICONDUCTOR MANUFACTURING TECHNOLOGY: Pearson Education, 2001.
    [39] Y. Makishima, K.-y. Hashimoto, and M. Yamaguchi, "Thin-Film Bulk Acoustic Resonators Employing ZnO/Pyrex-Glass Composite Diaphragm Structure," Jpn. J. Appl. Phys, vol. 33, pp. 2998-3000, 1994.
    [40] I. J.Bahl, Lumped Element for RF and Microwave Circuits: Artech House, 2003.
    [41] Z. Hao, M. S. Marma, K. Eun Sok, C. E. McKenna, and M. E. Thompson, "Implantable resonant mass sensor for liquid biochemical sensing," 2004.
    [42] Y. H. Chee, A. M. Niknejad, and J. Rabaey, "A sub-100 /spl mu/W 1.9-GHz CMOS oscillator using FBAR resonator," 2005.
    [43] 王彥伶,陳福厚, "新型無源元件的現況與發展," 2005.
    [44] Y. Yoshinoa, M. Takeuchia, K. Inouea, T. Makinoa, S. Araia, and T. Hatab, "Control of temperature coefficient of frequency in zinc oxide
    thin film bulkacoustic wave resonators at various frequency
    ranges," Vacuum, vol. 66, pp. 467-472, 2002.

    下載圖示 校內:2007-07-07公開
    校外:2007-07-07公開
    QR CODE