| 研究生: |
林哲榆 Lin, Che-Yu |
|---|---|
| 論文名稱: |
以非晶質氮化鋁為支撐層之薄膜型塊體聲波共振器的研究 Investigation of Thin Film Bulk Acoustic-wave Resonators Using Amorphous AlN as Supporting Layers |
| 指導教授: |
李炳鈞
Li, Bing-Jing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 薄膜型塊體聲波共振器 、氮化鋁 、支撐層 |
| 外文關鍵詞: | supporting layer, FBAR, AlN |
| 相關次數: | 點閱:87 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要分析與研製薄膜塊體聲波共振器(Film Bulk Acoustic-wave Resonator, FBAR),FBAR的結構為在矽基板上以白金為底電極,鋁為上電極,以反應式射頻磁控濺鍍機成長高C軸優選取向的氮化鋁薄膜,以激發出縱波並於薄膜表面處產生反射。本論文的FABR結構為背向蝕刻矽基板產生聲波空腔,使元件於氮化鋁薄膜內產生奇、偶數模態的串聯共振頻率和並聯共振頻率。
實驗為探討之對象為以非晶質氮化鋁(amorphous AlN)為支撐層之FBAR元件,探討支撐層厚度對元件的影響,發現當支撐層厚度較小時,其輸入阻抗較低,而有效機電耦合係數較大,Q值較小,而基頻向低頻漂移。除此之外,也探討改變電極面積的寬長比(Aspect Ratio)對元件的影響,當寬長比最大時,可得之元件的k2eff值最大而Q值最小。利用ADS模擬軟體可以萃取FBAR元件於基頻共振頻率的MBVD等效電路參數值,調整矽基板的寄生電容與電阻效應,可使模擬值與量測值接近,因而可和有效機電耦合係數k2eff 、Q值作一比較。
The paper presents the analysis and fabrication of thin film bulk acoustic wave resonator(FBAR). The FBAR structures are made of piezoelectric aluminum nitride layers on silicon wafer using the technique of RF magnetron sputtering. Aluminum and platinum are used as the top and bottom electrodes, respectively. The excited longitudinal bulk wave in the highly C-axis-oriented piezoelectric AlN film can bounce from the surface boundaries of the AlN membrane. Similar to an acoustical cavity, the FBAR structure exhibits parallel and series electrical resonance responses which correspond to even- and odd-order modes, respectively. The subject of the research is to use the amorphous AlN as the supporting layer for the FBAR devices and discuss the effect of the thickness of the amorphous AlN on the properties of the FBAR devices. The results show that input impedance (Zin) ,quality factor (Q) are decreasing while effective electromechanical coupling coefficient(k2eff) is increasing as the thickness of amorphous AlN is decreasing. The effect of the aspect ratio of the electrode on the FBAR devices is also presented. We find that the value of the Q factor decreases and increases when the aspect ratio of the electrode increases. The Modified Butterworth-Van Dyke model based on the fundamental resonant frequency response of resonators is used for the analysis of the FBAR structure. The resonant frequencies, effective electromechanical coupling coefficients(k2eff) and quality factors from the modeling method and experiments will be compared and discussed.
[1] 陶有福,戴建雄, "薄膜體聲波濾波器剖析與測試," 工研院材料所微感測器實驗室,2004
[2] 劉永宏, "氮化鋁薄膜體聲波共振器分析與研製(Analysis and Fabrication of AlN Thin Film Bulk Acoustic Wave Resonator)," in 電機所. 台灣: 國立成功大學, 2004, pp.1-3.
[3] C. M. Yang, K. Uehara, Y. Aota, S. K. Kim, S. Kameda, H. Nakase, Y. Isota, and K. Tsubouchi, "Growth of AlN film on Mo/SiO/sub 2//Si (111) for 5 GHz-band FBAR using MOCVD," 2004.
[4] J. Y. Park, H. M. Lee, H. C. Lee, K. H. Lee, Y. J. Ko, J. H. Shin, S. H. Moon, and J. U. Bu, "Comparison of micromachined FBAR band pass filters with different structural geometry," 2003.
[5] R. C. Ruby, P. Bradley, Y. Oshmyansky, A. Chien, and J. D. Larson, III, "Thin film bulk wave acoustic resonators (FBAR) for wireless applications," 2001.
[6] T. Nishihara, T. Yokoyama, T. Miyashita, and Y. Satoh, "High performance and miniature thin film bulk acoustic wave filters for 5 GHz," 2002.
[7] B. P. Otis and J. M. Rabaey, "A 300-/spl mu/W 1.9-GHz CMOS oscillator utilizing micromachined resonators," Solid-State Circuits, IEEE Journal of, vol. 38, pp. 1271-1274, 2003.
[8] P. Bradley, R. Ruby, J. D. Larson, III, Y. Oshmyansky, and D. Figueredo, "A film bulk acoustic resonator (FBAR) duplexer for USPCS handset applications," 2001.
[9] K. Dong-Hyun, Y. Munhyuk, C. Dongkyu, and G. Yoon, "Improvements of resonance characteristics due to thermal annealing of Bragg reflectors in ZnO-based FBAR devices," Electronics Letters, vol. 39, pp. 962-964, 2003.
[10] K.-W. Tay, C.-L. Huang, L. Wu, and M.-S. Lin, "Performance Characterization of Thin AlN Films deposited on Mo Electrode for Thin-Film Bulk Acoustic-Wave Resonators," Japanese Journal of Applied Physics, vol. 43, pp. 5510-5515, 2004.
[11] J. D. Larson, III, J. D. Ruby, III, R. C. Bradley, J. Wen, K. Shong-Lam, and A. Chien, "Power handling and temperature coefficient studies in FBAR duplexers for the 1900 MHz PCS band," 2000.
[12] M. Hara, J. Kuypers, and M. Esashi, "Surface micromachined AlN thin film 2GHz resonator for CMOS integration," Sensors and Actuators, pp. pp.211-216, 2005.
[13] R. Aigner, J. Ella, H. J. Timme, L. Elbrecht, W. Nessler, and S. Marksteiner, "Advancement of MEMS into RF-filter applications," 2002.
[14] R. B. Stokes and J. D. Crawford, "X-band thin film acoustic filters on GaAs," Microwave Theory and Techniques, IEEE Transactions on, vol. 41, pp. 1075-1080, 1993.
[15] H. Kanbara, H. Kobayashi, and K. Nakamura, "Analysis of Piezoelectric Thin Film Resonators with Acoustic Quarter-Wave Multilayers," presented at Jpn. J. Appl. Phys, 2000.
[16] K. M. Lakin and J. S. Wang, "Acoustic bulk wave composite resonators," Applied Physics Letters, vol. 38, pp. 125-127, 1981.
[17] F. ENEGRLMARK, "AlN and High-k Thin Film for IC and Electroacoustic Applications," ACTA UNIVERSITATIS UPSALIENSIS, 2002.
[18] C. Qingming, S. Tongying, and W. Qing-Ming, "Materials property dependence of the effective electromechanical coupling coefficient of thin film bulk acoustic resonators," 2004.
[19] S.-H. Leeab, K. H. Yoonb, D.-S. Cheonga, and J.-K. Leea*, "Relationship between residual stress and structural properties of AlN
films deposited by r.f. reactive sputtering," Thin Solid Films pp. p193-198, 2003.
[20] F. Hasegawa, T. Takahashi, K. Kubo, and Y. Nannichi, "Plasma CVD of Amorphous AlN from Metalorganic Al Source and Properties of the Deposited Films," Jpn. J. Appl. Phys, vol. 26, pp. P1555-1560, 1987.
[21] 陳怡誠, "高介電薄膜簡介," 2002.
[22] K.-W. TAY, "The Analysis and Design of Film Bulk Acoustic Wave Resonators," in Electrical Engineering. Taiwan: National Cheng Kung University, 2005, pp. pp.34-35.
[23] Morito Akiyamaa, K. Nagaob, N. Uenoa, H. Tateyamaa, and T. Yamadab, "Influence of metal electrodes on crystal orientation of aluminum nitride thin films," Vacuum, vol. 74, pp. 699-703, 2004.
[24] Z. Hao and K. Eun Sok, "Air-backed Al/ZnO/Al film bulk acoustic resonator without any support layer," 2002.
[25] C. C. Cheng, Y. C. Chen, H. J. Wang, and W. R. Chen, "Low temperature growth of piezoelectric AlN film by rf reactive planar magnetron sputtering.pdf," Journal of Vacuum Science and Technology, vol. 14, pp. 2238-2242, 1996.
[26] P. Wei, Y. Hongyu, Z. Hao, and K. Eun Sok, "Temperature-compensated film bulk acoustic resonator above 2 GHz," Electron Device Letters, IEEE, vol. 26, pp. 369-371, 2005.
[27] J. F. Rosenbaum, Bulk Acoustic Wave Theory and Devices. London England: Artech House, 1998.
[28] K.-W. Tay, C.-L. Huang, and L. Wu, "Influence of Piezoelectric Film and Electrode Materials on Film Bulk Acoustic-Wave Resonator Characteristics," presented at Japanese Journal of Applied Physics, 2003.
[29] 吳朗, 電子陶瓷-壓電. 台灣: 全欣圖書公司, 1994.
[30] G. H. Kim, M. J. Keum, H. I. Seo, D. S. Park, J. B. Lee, and K. H. Kim, "Crystallographic characteristics and effective electromechanical coupling coefficients of AlN thin films for FNAR applications," 2003.
[31] J. A. Ruffner, P. G. Clem, B. A. Tuttle, D. Dimos, and D. M. Gonzales, "Effect of substrate composition on the piezoelectric response of reactively sputtered AlN thin films," Thin Solid Films, vol. 346, pp. 256-261, 1999.
[32] C. L. Aardahl, J. W. R. Jr., Y. O. H. K. Yun, D. J. Tweet, and S. T. Hsu, "Electrical properties of AlN thin films deposited at low temperature on
Si(100)," Thin Solid Films, vol. 346, pp. 174-180, 1999.
[33] T. E. Kolding, "General accuracy considerations of microwave on-wafer silicon device measurements," 2000.
[34] T. E. Kolding, "Impact of test-fixture forward coupling on on-wafer silicon device measurements," Microwave and Guided Wave Letters, IEEE [see also IEEE Microwave and Wireless Components Letters], vol. 10, pp. 73-74, 2000.
[35] M. B. Assouar*, O. Elmazria, L. L. Brizoual, and P. Alnot, "Reactive DC magnetron sputtering of aluminum nitride films for surface
acoustic wave devices," Diamond and Related Materials, vol. 11, pp. 413-417, 2002.
[36] R. N. SIMONS, COPLANAR WAVEGUIDE CIRCUITS,COMPONENTS, AND SYSTEMS, vol. 1-57: WILEY INTERSCIENCE, 2001.
[37] 施敏, SEMICONDUCTOR DEVICES Physics and Technology. Taiwan: 國立交通大學出版社, 2001.
[38] H. XIAO, INTRODUCTION TO SEMICONDUCTOR MANUFACTURING TECHNOLOGY: Pearson Education, 2001.
[39] Y. Makishima, K.-y. Hashimoto, and M. Yamaguchi, "Thin-Film Bulk Acoustic Resonators Employing ZnO/Pyrex-Glass Composite Diaphragm Structure," Jpn. J. Appl. Phys, vol. 33, pp. 2998-3000, 1994.
[40] I. J.Bahl, Lumped Element for RF and Microwave Circuits: Artech House, 2003.
[41] Z. Hao, M. S. Marma, K. Eun Sok, C. E. McKenna, and M. E. Thompson, "Implantable resonant mass sensor for liquid biochemical sensing," 2004.
[42] Y. H. Chee, A. M. Niknejad, and J. Rabaey, "A sub-100 /spl mu/W 1.9-GHz CMOS oscillator using FBAR resonator," 2005.
[43] 王彥伶,陳福厚, "新型無源元件的現況與發展," 2005.
[44] Y. Yoshinoa, M. Takeuchia, K. Inouea, T. Makinoa, S. Araia, and T. Hatab, "Control of temperature coefficient of frequency in zinc oxide
thin film bulkacoustic wave resonators at various frequency
ranges," Vacuum, vol. 66, pp. 467-472, 2002.