| 研究生: |
魏擇壹 Wei, Ze-Yi |
|---|---|
| 論文名稱: |
基於Helmholtz共振腔及聲學材料設計應用於消音領域之螺旋槳保護罩案例研究 A case study on noise reduction of UAV propeller shield design based on Helmholtz resonance and acoustic material |
| 指導教授: |
侯廷偉
Hou, Ting-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | Helmholtz 共振腔 、無人機噪音抑制 、無人機螺旋槳保護罩 、多旋翼無人機 |
| 外文關鍵詞: | Helmholtz resonance, UAV noise reduction, unmanned aerial vehicle, UAV propeller shield |
| 相關次數: | 點閱:152 下載:30 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討結合Helmholtz共振腔之保護罩來改善小型四旋翼無人機之噪音,並針對特定噪音頻率以及某範圍的噪音頻域設計噪音抑制裝置,進行特定頻率範圍的噪音抑制工作。首先進行無人機噪音取樣,進行傅立葉轉換以及小波轉換,然後研究噪音來源及對應的消音方法,設計出結合Helmholtz共振腔之螺旋槳保護罩。分析部分,首先利用有限元素軟體 ANSYS 來模擬Helmholtz共振腔外部壓力震幅變化,以及聲壓變化,以預測在有加裝消音保護罩之情況下,噪音抑制的效果。設計部份則因要應用在小型無人機上,小型無人機負重有限,所以重量為第一考量。加工部分Helmholtz共振腔是使用3D列印的方式加工,多孔性、發泡性材料則是使用雷射切削過後與共振腔膠合。最後透過實驗為使用單螺旋槳加上保護罩進行實驗,實驗結果顯示本研究提出的三種不同的保護罩消音效果於10Hz-4000Hz分別可以消音3.72dB、4.14dB、4.98dB。
This research discusses the propeller shield with the Helmholtz resonator inside the combined foaming materials and porous material for noise reduction in UAVs. First, we analyze the noise sampling of the drone with both Fourier transform and wavelet transform, then study the source of noise and the corresponding noise reduction methods, and propose the design of three different propeller shield prototypes.
The most important design consideration is the weight of the prototypes. After all, they are to be applied to small drones, so weight is the first consideration. The Helmholtz resonator is made by 3D printing. Laser-cut porous and foaming materials are combined with the shield. They are glued to the Helmholtz resonator.
This research uses ANSYS to simulate the absolute pressure and acoustic pressure of the Helmholtz resonators to predict noise reduction effect by observing the amplitude and value changes.
The experimental results show that the noise reduction effect of three different propeller shields reduced 3.72dB、4.14dB、4.98dB in the 10Hz to 4000Hz frequency range in a single propeller experiment.
[1] Sound pressure, [online] Available : https://en.wikipedia.org/wiki/Sound_pressure , last retrieve 13 June. 2021.
[2] Helmholtz resonance, [online] Available : https://en.wikipedia.org/wiki/Helmholtz_resonance , last retrieve 21 May. 2021.
[3] Fourier transform, [online] Available : https://en.wikipedia.org/wiki/Fourier_transform , last retrieve 22 June. 2021.
[4] Wavelet, [online] Available : https://en.wikipedia.org/wiki/Wavelet, last retrieve 24 May. 2021.
[5] Heng, " Acoustic absorption properties of materials," Construction and Building Materials, USA , vol. 2, pp. 85-91. July. 1988.
[6] D. Miljković, " Methods for attenuation of unmanned aerial vehicle noise," 2018 41st International Convention on Information and Communication Technology Electronics and Microelectronics (MIPRO), Opatija, Croatia , pp. 914-919, doi: 10.23919/MIPRO.2018.8400169, May. 2018.
[7] Loudness, [online] Available : https://en.wikipedia.org/wiki/Loudness , last retrieve 12 June. 2021.
[8] Hermann von Helmholtz, [online] Available : https://en.wikipedia.org/wiki/Hermann_von_Helmholtz , last retrieve 15 May. 2021.
[9] S. H. Han, Y. C. Rhim, " Noise-level reduction of a slim-type optical disk drive using the Idea of a Helmholtz resonator", IEEE Transactions on Magnetics, vol. 45, pp. 2217-2220, doi: 10.1109/TMAG.2009.2019889, May 2009
[10] S. Mekid, M. Farooqui, "Design of Helmholtz resonators in one and two degrees of freedom for noise attenuation in pipe lines", Acoustics Australia / Australian Acoustical Society (ACOUST AUST), vol. 3, pp. 194-202, Dec 2012.
[11] A. Mohamud, A. Ashok, "Drone noise reduction through audio waveguiding", DroNet'18: Proceedings of the 4th ACM Workshop on Micro Aerial Vehicle Networks, Systems, and Applications, pp. 92-94, Jun 2018, doi: 10.1145/3213526.3213543.
[12] X. Zhao, L. Cai, D. Yu, Z. Lu and J. Wen, "A low frequency acoustic insulator by using the acoustic metasurface to a Helmholtz resonator", AIP Advances, vol. 7, doi: 10.1063/1.4989819, Jun 2017.
[13] J. Guo, T. Zhou, Y. Fang, X. Zhang, "Experimental study on a compact lined circular duct for small-scale propeller noise reduction", Applied Acoustics, vol. 179, 7 Apr 2021, doi: 10.1016/j.apacoust.2021.108062.
[14] H. Lee, B. Yang and H. Cho, "Noise reduction analysis using extended neck of helmholtz resonator within limited engine room", International Journal of Applied Engineering Research ISSN 0973-4562, vol. 12, pp. 3444-3447, 2017.
[15] J. Guo, X. Zhang, Y. Fang, Z. Jiang, "Wideband low-frequency sound absorption by inhomogeneous multi-layer resonators with extended necks", Composite Structures, vol. 260, doi: 10.1016/j.compstruct.2020.113538, Mar 2021
[16] C. Casarini, F. C. Windmill, J. C. Jackson, "3D printed small-scale acoustic metamaterials based on Helmholtz resonators with tuned overtones", 2017 IEEE Sensors, pp. 1-3, doi: 10.1109/ICSENS.2017.8234381, Nov 2017.
[17] Ansys, [online] Available : https://en.wikipedia.org/wiki/Ansys, last retrieve 19 May 2021.
[18] SOILDWORKS, [online] Available : https://www.solidworks.com
[19] Creo: Design. The way it should be, [online] Available : https://www.ptc.com/en/products/creo.