簡易檢索 / 詳目顯示

研究生: 李明鑫
Li, Ming-Hsin
論文名稱: 空氣傳輸超音波感測器之設計與製作
Design and Fabrication of Air Transmission Ultrasonic Sensor
指導教授: 李文熙
Lee, Wen-Shi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 100
中文關鍵詞: 有限元素法非對稱圓形壓電複合薄板倒車雷達超音波感測器
外文關鍵詞: ultrasonic sensor, non-symmetric piezoelectric bimorphs, finite element method, automobile back-up sensor
相關次數: 點閱:91下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 壓電材料最早的應用即是製作成感測器,有別於水下環境的應用,目前也發展出空氣傳輸之超音波感測器,車用系統中的倒車雷達即為其中應用例。本文中完整製作之壓電感測器為具有非對稱指向性的封閉式超音波感測器,研究範圍包括理論模擬、製程實作與實驗量測。
    在理論方面使用非對稱圓形壓電複合薄板理論及有限元素法對結構作諧振頻率分析並得到一致性的結果,再以等效電路方式將壓電元件表示成被動元件參數,從參數的變化可以找出調整諧振點的線性區落在振動板厚度的特定範圍內。另外也使用有限元素法對超音波元件作非對稱指向性的模擬,證實其模擬的可行性。
    在實作中壓電片的製作使用平行板改良極化法,可以提供比傳統方式較高良率及極化特性之壓電片,並根據理論與模擬來設計、組裝超音波感測器,再以高溫填膠法縮短元件殘響時間。最後完整測量實作樣品,證明實作與模擬之相關性,可作為壓電超音波感測器設計之依據。

    One of the earliest applications of piezoelectric material is used to make sensors. It’s different from using under the water, air transmission ultrasonic sensors has been developed nowadays. Automobile back-up sensor is one of the applied examples. This research investigates the piezoelectric sensors, which are water proof type ultrasonic sensors with asymmetric directivity. The investigation includes theoretical simulation, fabrication and experimental measurement.
    The simulation is based on modeling of non-symmetric piezoelectric bimorphs and finite element method. The analysis of resonant frequency has been carried out for the same result with both simulations. A piezoelectric element may express passive components by the equivalent circuit model. The linear area of adjustable resonance frequency can be found by the change of parameters, which falls on the specific thickness range. Further, the simulation of asymmetric directivity using finite element method is proposed and demonstrated practicability.
    The fabrication of piezoelectric ceramic disks is polarized by parallel boards. This reformatory polarization method can provide higher yield rate and characteristic than traditional methods. Design and fabrication of ultrasonic sensors are according to
    theoretical simulation, and then seal the sensors in high temperature to reduce decay time. Finally, complete properties of samples are measured. The relation of experiments and simulation results evidences feasibility and pave a way for future design.

    目錄 第一章 緖論 1-1 研究背景與動機.................... 1 1-2 研究目的.................... 4 1-3 論文架構.................... 5 第二章 壓電理論與應用 2-1 壓電效應.................... 6 2-2 壓電方程式.................... 9 2-3 壓電材料參數與定義....................14 2-4 壓電材料和應用....................15 2-5 壓電等效電路與應用....................17 第三章 超音波感測器理論與量測分析 3-1 非對稱圓形壓電複合薄板理論....................21 3-2 超音波感測器之有限元素理論....................30 3-3 超音波感測器性能與測量分析....................36 3-4 超音波感測器構造與設計....................42 第四章 超音波感測器模擬與實作 4-1 非對稱圓形壓電複合薄板建構與模擬....................48 4-2 有限元素模型建構與模擬....................52 4-3 等效電路模型建構與模擬....................63 4-4 超音波感測器之製造....................66 4-5 超音波感測器元件之效能....................71 4-6 結果與討論....................79 第五章 結論 5-1 結論....................83 5-2 未來展望....................84 參考文獻 表目錄 表2.1 各種壓電參數之定義....................12 表2.2 壓電陶瓷參數矩陣....................14 表2.3 代表性壓電材料之特性參數....................17 表4.1 材料參數....................48 表4.2 半徑R對頻率變化....................50 表4.3 壓電片厚度hp對頻率變化....................50 表4.4 接合膠厚度hc對頻率變化....................51 表4.5 鋁基板厚度hs對頻率變化....................51 表4.6 相同頻率之位移量....................52 表4.7 模擬尺寸及所得頻率....................53 表4.8 壓電片半徑R1對頻率變化....................54 表4.9 振動板半徑R2對頻率變化....................54 表4.10 壓電片厚度Hp對頻率變化....................55 表4.11 接合膠厚度Hc對頻率變化....................56 表4.12 鋁基板厚度Hs對頻率變化....................56 表4.13 複合薄板理論與有限元素法之變化率....................57 表4.14 不同邊界條件之共振頻....................59 表4.15 不同條件之共振頻、反共振頻及等效電路元件值....................64 表4.16 壓電材料參數表....................67 表4.17 10樣品共振頻及平均值....................70 表4.18 實作之振動板厚度與共振頻變化....................70 表4.19 音壓位準與頻率響應量測值....................73 表4.20 靈敏度與頻率響應量測值....................75 表4.21 指向性之每15度量測值....................78 表4.22 模擬與實作未修改之共振頻及誤差百分比....................80 表4.23 實作與模擬之振動板與頻率關係....................80 表4.24 頻率、dB值與頻寬....................81 表4.25 水平之指向性比較....................81 表4.26 垂直之指向性比較....................82 圖目錄 圖1.1 超音波感測器.................... 3 圖2.1 壓電效應.................... 7 圖2.2 鈣礦類壓電陶瓷的晶相.................... 8 圖2.3 極化與應變.................... 9 圖2.4 P-E遲滯曲線.................... 9 圖2.5 壓電材料方向表示....................12 圖2.6 基本測量電路....................18 圖2.7 壓電體之阻抗與頻率關係....................18 圖2.8 諧振體等效電路....................19 圖2.9 極座標圖....................19 圖2.10 壓電諧振體等效電路....................20 圖3.1 非對稱圓形壓電複合薄板....................21 圖3.2 感測器之撓曲現象....................22 圖3.3 中性面及應力分怖....................26 圖3.4 有限元素法之壓電等效電路....................35 圖3.5 Wayne Kerr 6515B 阻抗分析儀....................37 圖3.6 音壓測試之示意圖....................38 圖3.7 靈敏度測試之示意圖....................39 圖3.8 反射靈敏度測試之示意圖....................40 圖3.9 殘響時間測試之示意圖....................41 圖3.10 半功率指向性測試之示意圖....................42 圖3.11 超音波感測器構造....................42 圖3.12 感測器元件尺寸....................43 圖3.13 遠場情況下之超音波轉換器指向性曲線....................46 圖3.14 非對稱超音波感測器之外殼設計....................47 圖4.1 撓曲形變圖....................48 圖4.2 撓曲形變一次微分圖....................49 圖4.3 力矩分怖圖....................49 圖4.4 半徑R對頻率變化....................50 圖4.5 壓電片厚度hp對頻率變化....................50 圖4.6 接合膠厚度hc對頻率變化....................51 圖4.7 鋁基板厚度hs對頻率變化....................51 圖4.8 有限元素模擬結構....................53 圖4.9 ANSYS之網格圖....................53 圖4.10 壓電片半徑R1對頻率變化....................54 圖4.11 振動板半徑R2對頻率變化....................55 圖4.12 壓電片厚度Hp對頻率變化....................55 圖4.13 接合膠厚度Hc對頻率變化....................56 圖4.14 鋁基板厚度Hs對頻率變化....................56 圖4.15 外殼鋁材部份尺寸....................58 圖4.16 感測元件有限元素模型....................58 圖4.17 頻域分析壓電元件阻抗圖....................60 圖4.18 近似等效電路圖....................60 圖4.19 模態分析之位移分布....................61 圖4.20 指向性有限元素模型....................62 圖4.21 指向性的模擬結果....................63 圖4.22 厚度對等效電路C0....................65 圖4.23 厚度對等效電路C1....................65 圖4.24 厚度對等效電路之L1....................65 圖4.25 壓電片製作流程圖....................67 圖4.26 排膠和燒結溫度時間曲線....................68 圖4.27 燒銀溫度時間曲線....................68 圖4.28 平行板極化示意圖....................69 圖4.29 極化增量比較....................69 圖4.30 感測器組裝材料....................70 圖4.31 感測器成品....................70 圖4.32 實作之振動板厚度與共振頻變化....................71 圖4.33 超音波感測器之阻抗分析圖....................72 圖4.34 阻抗分析圖與等效電路....................72 圖4.35 超音波感測器之等效電路....................73 圖4.36 音壓位準與頻率響應曲線....................74 圖4.37 靈敏度與頻率響應曲線....................75 圖4.38 反射靈敏度之量測圖....................76 圖4.39 殘響時間之量測圖....................77 圖4.40 指向性之量測圖....................79

    [1] J. Curie and P. Curie, Bull. Soc. Min. France, 3, pp.90, 1880
    [2] S. Roberts, “Dielectric and piezoelectric properties of barium titanate” J. Phys. Rev., 71, 890, (1947).
    [3] G. Shirane, E. Sawaguchi and T. Takagi, Phys. Rev., 84, pp.476, 1951
    [4] G. Shirane and K. Suzuki, J. Phy. Soc. Japan, 7, pp.333, 1952
    [5] E. Swaguchi, J. Phys. Soc. Japan, 8, pp.615, 1953
    [6] G. Shirane and A. Takeda, J. Phy. Soc. Japan, 7, pp.5, 1952
    [7] Y. Takagi, Phys. Rev., 85, pp.315, 1952
    [8] B. Jaffe, R. S. Roth and S. Marzullo, J. Res. Nat. Bur. Stds., 55, pp.239, 1955
    [9] 吳朗,電子陶瓷-壓電,全欣資訊圖書,1994
    [10] 周卓明,壓電力學,全華科技圖書股份有限公司出版,1993
    [11] B. Jaffe, W. R. Cook, and H. Jaffe, “Piezoelectric ceramics,” Cleveland, Ohio, 1971
    [12] W. P. Mason, “Electromechanical Transducers and Wave Filters,” Princeton. NJ: Van Nostrand, 1948
    [13] M. Redwood, “Transient Performance of a Piezoelectric Transducer,” J. Acoust. Soc. Am., vol. 33, pp. 527-536, 1961
    [14] R. Krimholtz, D. A. Leedom and G. L. Matthaei, “New Equivalent Circuits for Elementary Piezoelectric Transducers,” Electron. Lett., vol. 6, no. 13, pp. 398-399, 1970
    [15] Charles S. Desilets, John D. Fraser and Gordon S. Kino, “The Design of Efficient Broad-Band Piezoelectric Transducers,” IEEE Tran. Sonics and Ultrasonics, vol. su-25, no.3, pp. 115-125, 1978
    [16] J. Souquet, P. Defranould and J. Desbois, “Design of Low-Loss Wide-Band Ultrasonic Transducers for Noninvasive Medical Application,” IEEE Tran. Sonics and Ultrasonics, vol. su-26, no.2, pp. 75-81, 1979
    [17] S. P. Timoshenko and S. W. Krieger, “Theory of Plates and Shells,” Second Edition, Singapore, 1959
    [18] A. Leissa, “Vibration of Plates,” Acoustical Society of America, 1993
    [19] M. Brissaud, “Characterization of piezoceramics,” IEEE Trans. Ultrason., Ferroelect., Freq. Control. v.38, pp.603–617, 1991
    [20] “CRC standard mathematical tables and formulae,” Boca Raton: CRC Press, 1991
    [21] M. Brissaud, “Theoretical modelling of non-symmetric circular piezoelectric bimorphs,” J. Micromech. Microeng. 2006
    [22] 康淵,陳信吉,ANSYS 入門,全華科技圖書股份有限公司,2004
    [23] 鄒年棣,應用有限元素法模擬壓電元件與超音波波傳,國立台灣大學土木工程學研究所碩士論文,2006
    [24] R. Mitra, “On the performance characterization of ultrasonic air transducerswith radiating membranes,” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on Volume 43, Issue 5, 1996
    [25] R. Lerch, “Simulation of piezoelectric devices by two- and three-dimensional finite element,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 37(2), 1990
    [26] S. Sherrit, H. D. Wiederick, B. K. Mukherjee, “Accurate equivalent circuits for unloaded piezoelectric resonators,” Ultrasonics Symposium, 1997. Proceedings., 1997
    [27] Comparison of Rectangular and Spherical Models, http://ansys.net/papers/cubeandsphere.pdf
    [28] 胡智凱,封閉式超音波感測器之設計與有限元素模擬,國立台灣大學土木工程學研究所碩士論文,2007

    下載圖示 校內:2009-08-21公開
    校外:2009-08-21公開
    QR CODE