| 研究生: |
李明鑫 Li, Ming-Hsin |
|---|---|
| 論文名稱: |
空氣傳輸超音波感測器之設計與製作 Design and Fabrication of Air Transmission Ultrasonic Sensor |
| 指導教授: |
李文熙
Lee, Wen-Shi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 有限元素法 、非對稱圓形壓電複合薄板 、倒車雷達 、超音波感測器 |
| 外文關鍵詞: | ultrasonic sensor, non-symmetric piezoelectric bimorphs, finite element method, automobile back-up sensor |
| 相關次數: | 點閱:91 下載:22 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
壓電材料最早的應用即是製作成感測器,有別於水下環境的應用,目前也發展出空氣傳輸之超音波感測器,車用系統中的倒車雷達即為其中應用例。本文中完整製作之壓電感測器為具有非對稱指向性的封閉式超音波感測器,研究範圍包括理論模擬、製程實作與實驗量測。
在理論方面使用非對稱圓形壓電複合薄板理論及有限元素法對結構作諧振頻率分析並得到一致性的結果,再以等效電路方式將壓電元件表示成被動元件參數,從參數的變化可以找出調整諧振點的線性區落在振動板厚度的特定範圍內。另外也使用有限元素法對超音波元件作非對稱指向性的模擬,證實其模擬的可行性。
在實作中壓電片的製作使用平行板改良極化法,可以提供比傳統方式較高良率及極化特性之壓電片,並根據理論與模擬來設計、組裝超音波感測器,再以高溫填膠法縮短元件殘響時間。最後完整測量實作樣品,證明實作與模擬之相關性,可作為壓電超音波感測器設計之依據。
One of the earliest applications of piezoelectric material is used to make sensors. It’s different from using under the water, air transmission ultrasonic sensors has been developed nowadays. Automobile back-up sensor is one of the applied examples. This research investigates the piezoelectric sensors, which are water proof type ultrasonic sensors with asymmetric directivity. The investigation includes theoretical simulation, fabrication and experimental measurement.
The simulation is based on modeling of non-symmetric piezoelectric bimorphs and finite element method. The analysis of resonant frequency has been carried out for the same result with both simulations. A piezoelectric element may express passive components by the equivalent circuit model. The linear area of adjustable resonance frequency can be found by the change of parameters, which falls on the specific thickness range. Further, the simulation of asymmetric directivity using finite element method is proposed and demonstrated practicability.
The fabrication of piezoelectric ceramic disks is polarized by parallel boards. This reformatory polarization method can provide higher yield rate and characteristic than traditional methods. Design and fabrication of ultrasonic sensors are according to
theoretical simulation, and then seal the sensors in high temperature to reduce decay time. Finally, complete properties of samples are measured. The relation of experiments and simulation results evidences feasibility and pave a way for future design.
[1] J. Curie and P. Curie, Bull. Soc. Min. France, 3, pp.90, 1880
[2] S. Roberts, “Dielectric and piezoelectric properties of barium titanate” J. Phys. Rev., 71, 890, (1947).
[3] G. Shirane, E. Sawaguchi and T. Takagi, Phys. Rev., 84, pp.476, 1951
[4] G. Shirane and K. Suzuki, J. Phy. Soc. Japan, 7, pp.333, 1952
[5] E. Swaguchi, J. Phys. Soc. Japan, 8, pp.615, 1953
[6] G. Shirane and A. Takeda, J. Phy. Soc. Japan, 7, pp.5, 1952
[7] Y. Takagi, Phys. Rev., 85, pp.315, 1952
[8] B. Jaffe, R. S. Roth and S. Marzullo, J. Res. Nat. Bur. Stds., 55, pp.239, 1955
[9] 吳朗,電子陶瓷-壓電,全欣資訊圖書,1994
[10] 周卓明,壓電力學,全華科技圖書股份有限公司出版,1993
[11] B. Jaffe, W. R. Cook, and H. Jaffe, “Piezoelectric ceramics,” Cleveland, Ohio, 1971
[12] W. P. Mason, “Electromechanical Transducers and Wave Filters,” Princeton. NJ: Van Nostrand, 1948
[13] M. Redwood, “Transient Performance of a Piezoelectric Transducer,” J. Acoust. Soc. Am., vol. 33, pp. 527-536, 1961
[14] R. Krimholtz, D. A. Leedom and G. L. Matthaei, “New Equivalent Circuits for Elementary Piezoelectric Transducers,” Electron. Lett., vol. 6, no. 13, pp. 398-399, 1970
[15] Charles S. Desilets, John D. Fraser and Gordon S. Kino, “The Design of Efficient Broad-Band Piezoelectric Transducers,” IEEE Tran. Sonics and Ultrasonics, vol. su-25, no.3, pp. 115-125, 1978
[16] J. Souquet, P. Defranould and J. Desbois, “Design of Low-Loss Wide-Band Ultrasonic Transducers for Noninvasive Medical Application,” IEEE Tran. Sonics and Ultrasonics, vol. su-26, no.2, pp. 75-81, 1979
[17] S. P. Timoshenko and S. W. Krieger, “Theory of Plates and Shells,” Second Edition, Singapore, 1959
[18] A. Leissa, “Vibration of Plates,” Acoustical Society of America, 1993
[19] M. Brissaud, “Characterization of piezoceramics,” IEEE Trans. Ultrason., Ferroelect., Freq. Control. v.38, pp.603–617, 1991
[20] “CRC standard mathematical tables and formulae,” Boca Raton: CRC Press, 1991
[21] M. Brissaud, “Theoretical modelling of non-symmetric circular piezoelectric bimorphs,” J. Micromech. Microeng. 2006
[22] 康淵,陳信吉,ANSYS 入門,全華科技圖書股份有限公司,2004
[23] 鄒年棣,應用有限元素法模擬壓電元件與超音波波傳,國立台灣大學土木工程學研究所碩士論文,2006
[24] R. Mitra, “On the performance characterization of ultrasonic air transducerswith radiating membranes,” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on Volume 43, Issue 5, 1996
[25] R. Lerch, “Simulation of piezoelectric devices by two- and three-dimensional finite element,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 37(2), 1990
[26] S. Sherrit, H. D. Wiederick, B. K. Mukherjee, “Accurate equivalent circuits for unloaded piezoelectric resonators,” Ultrasonics Symposium, 1997. Proceedings., 1997
[27] Comparison of Rectangular and Spherical Models, http://ansys.net/papers/cubeandsphere.pdf
[28] 胡智凱,封閉式超音波感測器之設計與有限元素模擬,國立台灣大學土木工程學研究所碩士論文,2007