簡易檢索 / 詳目顯示

研究生: 李真甄
Lee, Chen-Chen
論文名稱: 細胞黏著力的量測技術
A New Technique for Measurement of Cell Adhesion
指導教授: 蘇芳慶
Su, Fong-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 93
中文關鍵詞: 纖維母細胞細胞黏著力量
外文關鍵詞: adhesion force, fibroblast
相關次數: 點閱:68下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞接觸基質或材料時,細胞首先發生貼附及黏著的現象,這個現象會決定細胞在基材上的生理表現,進而影響細胞所能發揮的特有功能,因此有學者藉由評估細胞的黏著能力,來評斷細胞的表現。在這些研究中有許多的報告從生化、材料、力學的觀點來評估細胞黏著表現。本研究從力學的觀點,來評估細胞的黏著能力。
    本研究的目的為設計一套機構,並利用此機構量測單一細胞的黏著力量,藉此評估細胞黏著能力。機構中採用原子力顯微鏡探針上的懸桿為施力為施力設備,藉由細胞以等速逼近懸桿,使懸桿對細胞施加剪力並將細胞從基材上刮下,再分析懸桿的偏移量求出探針對細胞的施力,藉此求得細胞的黏著力量。
    完成機構設計及測試後,利用此機構觀察3T3纖維母細胞在不同溫度及實驗溶液下,細胞黏著力量的改變。結果發現細胞在相同溫度下於Dulbeccos Modification of Eagles Medium(DMEM,培養基)+10%Fetal Bovine Serum(FBS,胎牛血清)中的黏著現最佳,其次為在DMEM中,而在Phospate-Buffered Saline(PBS,無機鹽溶液)中的表現則最差。此外發現細胞在25℃時的黏著力較37℃佳,推論造成此結果的因素為加熱片由培養皿底部加熱,造成培養皿上的細胞所在溫度較37℃高,造成細胞和基材間的黏著能力下降。

    After cells attach the substrata, cells begin to spread and form an organized actin cytoskeleton and complex transmembrane signaling regions, then cells start to express their functions, such as proliferation, differentiation and so on. Therefore cell adhesion is very important. Recently, a number of studies have investigated cell adhesion from the viewpoint of biochemistry, materials, and mechanics. In this study, we observed the adhesion from mechanical point of view.
    The objective of this study was to develop a detachment technique to quantitatively measure the adhesive force between cells and substrata. The detachment of a cell was completed by a custom-designed rig which is consisted of the probe of AFM (atomic force microscopy), an AFM probe holder, and a cantilever arm mounted on the laser tweezers workstation. The cell is moved using a motorized stage to contact the AFM probe and the cell adhesion force is measured in terms of the deflection of the probe by video image analysis.
    Finally, this developed detachment technique was used to measure the adhesion force of 3T3 fibroblast in different mediums at temperature 25℃ and 37℃, respectively. The results demonstrate that a greater force is required to detach cells in Dulbeccos modification of eagles medium (DMEM)+10% fetal bovine serum (FBS) versus DMEM and PBS (Phospate-Buffered Saline). However, our result also showed that the adhesion force of 3T3 fibroblast in 25℃ is greater than in 37℃. We infer that the heater which transfers heat directly from the bottom of the petri dish may cause the poor uniformity of temperature inside. And the temperature at the contact area where cells grow on may be much higher than 37℃ such that the possible damage to the cells will decrease the adhesion force of cells to substrate.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第1章 緒論 1-1 1.1 細胞黏著(CELL ADHESION) 1-1 1.2 量測細胞黏著力量的方法 1-2 1.2.1 以離心機(Centrifugation)為施力設備 1-3 1.2.2 以平行流體巢(Parallel Flow Chamber)為施力設備 1-4 1.2.3 以旋轉盤(Spinning Dish)為施力設備 1-5 1.2.4 以微小吸取器(Micropipette)為施力設備 1-6 1.2.5 以微小懸桿(Microcantilever)為施力設備 1-7 1.2.6 比較五種施力設備量測出的細胞黏著力量間的差異1-9 1.3 文獻回顧 1-10 1.4 研究動機與目的 1-19 第2章 實驗方法 2-1 2.1 實驗設備 2-1 2.1.1 雷射鑷工作系統(Laser Tweezers Workstation)2-1 2.1.2 原子力顯微鏡探針(Atomic Force Microscope Probe) 2-6 2.1.3 環境溫度及二氧化碳控制系統 2-8 2.2 夾具 2-10 2.2.1 第一次夾具的設計 2-10 2.2.2 第二次夾具的設計 2-12 2.2.3 第三次夾具的設計 2-14 2.3 實驗流程 2-17 2.3.1 實驗原理 2-17 2.3.2 實驗設計 2-18 2.3.3 實驗前的準備工作 2-19 2.3.4 實驗步驟 2-24 2.4 資料分析 2-25 2.4.1 影像處理 2-25 2.4.2 數值分析 2-29 第3章 結果 3-1 3.1 系統校正參數 3-1 3.1.1 機構穩定度 3-1 3.1.2 溫度感測參數 3-2 3.1.3 載玻片粗糙度 3-8 3.2 細胞黏著力量 3-9 3.2.1 細胞黏著隨時間變化的情形 3-9 3.2.2 細胞黏著力量典型圖 3-13 3.2.3 細胞黏著力量分析 3-15 第4章 討論 4-1 4.1 機構部份 4-1 4.1.1 實驗過程中可能造成誤差的來源 4-1 4.1.2 機構優缺點的探討 4-1 4.1.3 和文獻回顧中相關機構的差異性 4-3 4.2 實驗結果的討論 4-5 第5章 結論 5-1 第6章 參考文獻 6-1

    1.Gronowicz, G. and M.B. McCarthy, Response of human osteoblasts to implant materials: integrin-mediated adhesion. Journal of Orthopaedic Research., 1996. 14(6): p. 878-87.
    2.Zhu, C., Kinetics and mechanics of cell adhesion. Journal of Biomechanics., 2000. 33 (1): p. 23-33.
    3.Zhu, C., G. Bao, and N. Wang, Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annual Review of Biomedical Engineering., 2000. 2: p. 189-226.
    4.Anselme, K., Osteoblast adhesion on biomaterials. Biomaterials., 2000. 21(7): p. 667-81.
    5.王婓, s., 醫學細胞分子生物學 1st. 2001.
    6.McClay, D.R., G.M. Wessel, and R.B. Marchase, Intercellular recognition: quantitation of initial binding events. Proceedings of the National Academy of Sciences of the United States of America., 1981. 78(8): p. 4975-9.
    7.Lotz, M.M., et al., Cell adhesion to fibronectin and tenascin: quantitative measurements of initial binding and subsequent strengthening response. Journal of Cell Biology., 1989. 109(4 Pt 1): p. 1795-805.
    8.Thoumine, O., A. Ott, and D. Louvard, Critical centrifugal forces induce adhesion rupture or structural reorganization in cultured cells. Cell Motility & the Cytoskeleton., 1996. 33(4): p. 276-87.
    9.Owens, N.F., D. Gingell, and P.R. Rutter, Inhibition of cell adhesion by a synthetic polymer adsorbed to glass shown under defined hydrodynamic stress. Journal of Cell Science., 1987. 87(Pt 5): p. 667-75.
    10.Truskey, G.A. and T.L. Proulx, Relationship between 3T3 cell spreading and the strength of adhesion on glass and silane surfaces. Biomaterials., 1993. 14(4): p. 243-54.
    11.Garcia, A.J., P. Ducheyne, and D. Boettiger, Quantification of cell adhesion using a spinning disc device and application to surface-reactive materials. Biomaterials., 1997. 18 (16): p. 1091-8.
    12.Horbett, T.A., et al., Cell adhesion to a series of hydrophilic-hydrophobic copolymers studied with a spinning disc apparatus. Journal of Biomedical Materials Research., 1988. 22(5): p. 383-404.
    13.Sung, K.L., et al., Adhesion strength of human ligament fibroblasts. Journal of Biomechanical Engineering., 1994. 116(3): p. 237-42.
    14.Sato, M., N. Ohshima, and R.M. Nerem, Viscoelastic properties of cultured porcine aortic endothelial cells exposed to shear stress. Journal of Biomechanics., 1996. 29(4): p. 461-7.
    15.Thoumine, O. and A. Ott, Comparison of the mechanical properties of normal and transformed fibroblasts. Biorheology., 1997. 34(4-5): p. 309-26.
    16.Yamamoto, A., et al., A new technique for direct measurement of the shear force necessary to detach a cell from a material. Biomaterials., 1998. 19(7-9): p. 871-9.
    17.Athanasiou, K.A., et al., Development of the cytodetachment technique to quantify mechanical adhesiveness of the single cell. Biomaterials., 1999. 20(23-24): p. 2405-15.
    18.Hoben, G., et al., Quantification of varying adhesion levels in chondrocytes using the cytodetacher. Annals of Biomedical Engineering, 2002. 30(5): p. 703-12.
    19.Sagvolden, G., et al., Cell adhesion force microscopy. Proceedings of the National Academy of Sciences of the United States of America., 1999. 96(2): p. 471-6.
    20.Sagvolden, G., Protein adhesion force dynamics and single adhesion events. Biophysical Journal., 1999. 77(1): p. 526-32.
    21.Rafael, C.G. and E.W. Richard, Digial image processing. 2002.
    22.Otsu, N., A threshold selection method from gray-level histogram. IEEE transactions on systems. man and cybernetics, 1979. smc-9: p. 62-66.
    23.Lo, C.M., et al., Cell-substrate separation: effect of applied force and temperature. European Biophysics Journal., 1998. 27(1): p. 9-17.

    下載圖示 校內:2004-08-08公開
    校外:2004-08-08公開
    QR CODE