| 研究生: |
林燕伶 Lin, Yan-Ling |
|---|---|
| 論文名稱: |
以非目標分析鑑定聚甲基丙烯酸甲酯奈米塑膠的太陽光降解產物之研究 A Study of Using Non-target Analysis to Characterize Solar Degradation Products of Polymethyl Methacrylate Nanoplastics |
| 指導教授: |
侯文哲
Hou, Wen-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 模擬太陽光 、聚甲基丙烯酸甲酯(PMMA) 、奈米塑膠 、非目標分析 、降解產物 |
| 外文關鍵詞: | simulated sunlight, polymethyl methacrylate (PMMA), nanoplastics, non-target analysis, degradation products |
| 相關次數: | 點閱:69 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
聚甲基丙烯酸甲酯(PMMA)是一種廣泛應用於日常生活中的塑膠,又稱為壓克力,常用於替代玻璃。目前已知PMMA 奈米塑膠[nanoplastics (NPs), <1 μm]存在於進流廢水、地表水和地下水中。儘管光降解是塑膠在環境中主要的降解途徑,但 PMMA 的高光學透明度和缺乏芳香環使其具有抗紫外線的特性。因此,PMMA NPs在太陽光下的光轉化機制仍不清楚。本研究對水中的PMMA NPs進行了為期兩個月(即1,506小時)的連續模擬太陽光照射實驗,這相當於346天的天然太陽光照射。
我們的結果顯示,光照導致PMMA NPs的濃度顯著轉化了12%。釋出於水中的溶解性有機碳(DOC)隨著照光時間逐漸增加至24.9 mg C/L,而溶解性無機碳(DIC)則無明顯釋出,代表沒有發生光礦化作用。碳質量平衡分析(包括固體PMMA NPs、DOC和DIC)顯示碳質量平衡接近100%,且PMMA NPs主要轉化為DOC。動力學分析顯示, PMMA NPs的轉化符合一階反應動力學,R2為0.92,在連續光照下的半衰期為14.64 ± 4.11個月。此外,與現有文獻全面比較發現,尺寸較小的塑膠顆粒在光照後通常具有較高的DOC生成速率與較短的半衰期,這表示顆粒尺寸對塑膠的光轉化具有重要作用。紫外可見光光譜(UV-visible)吸收度分析顯示,溶解性有機物質(DOM)在200-400 nm範圍內的吸光度隨著照光時間增加,這與DOC增加的趨勢一致。三維螢光激發發射光譜(F-EEM)分析則顯示DOM的螢光特徵與可溶性類微生物副產物及類蛋白質物質的特徵一致,且強度隨照光時間增加。此外,本研究開發了非目標分析方法,以深入了解生成的DOM結構。透過使用HILIC和反相C18管柱,我們鑑定出八種光轉化產物,其中四種被鑑定為信心等級3(暫定候選物),包括酸類和酯類化合物。所有產物均為相對富含含氧官能基的親水性化合物。隨著光照時間增加,這些產物的存在呈現動態變化,但整體上持續生成。本研究為PMMA NPs的光化學宿命提供了重要的見解,強調了進一步了解轉化的PMMA NPs及溶解性產物可能對生態造成影響的重要性。
Polymethyl methacrylate (PMMA), commonly known as acrylic, is a widely used plastic in daily life, often serving as a substitute for glass. Currently, it is known that PMMA nanoplastics (NPs, <1 μm) exist in wastewater influent, surface water, and groundwater. While photodegradation is a key pathway for plastic degradation in the environment, PMMA’s high optical transparency and lack of aromatic rings make it UV-resistant. As a result, the phototransformation of PMMA NPs under sunlight remain unclear. This study conducted a two-month (i.e., 1,506 h) continuous simulated sunlight irradiation experiment on aqueous PMMA NPs, equivalent to 346 d of real sunlight irradiation.
Our result shows that sunlight irradiation resulted in a notable 12% transformation of PMMA NP concentration. The dissolved organic carbon (DOC) released into the water gradually increased to 24.9 mg C/L with prolonged irradiation, while there was no significant release of dissolved inorganic carbon (DIC), indicating no photo-mineralization. The carbon mass balance analysis (including solid PMMA NPs, DOC, and DIC) reveals a carbon mass balance of nearly 100%, and the predominant conversion of PMMA NPs into DOC. The kinetic analysis shows that the transformation of PMMA NPs can be adequately described by the first-order reaction kinetics with R2 = 0.92 with a half-life of 14.64 ± 4.11 months under continuous solar irradiation. Furthermore, a comprehensive comparison with existing literature reveals that irradiation of plastic particle with smaller sizes under environmentally relevant conditions tends to result in higher DOC formation rates with shorter half-lives, suggesting that the particle size plays a significant role in the phototransformation of plastics. The UV-visible absorbance analysis shows that the absorbance of dissolved organic matter (DOM) in the 200-400 nm range increased with irradiation time, consistent with the trend observed in the DOC increase. The fluorescence excitation-emission matrix (F-EEM) analysis reveals that the fluorescence characteristics of DOM were coincident to those of soluble microbial byproduct-like and protein-like substances, with the intensity increasing with irradiation time. Furthermore, this study developed a non-target analysis (NTA) method to gain insights into the structure of DOM formed. Using HILIC and reverse-phase C18 columns, we identified 8 phototransformation products, among which 4 were identified with a confidence level 3 (tentative candidates), including acids and ester compounds. All products were hydrophilic compounds relatively rich in oxygen-containing functional groups. With increased irradiation time, the presence of these products exhibited dynamic changes but continued to be produced overall. This study provides crucial insights into the photochemical fate of PMMA NP, highlighting the importance to further understanding of the possible ecological impact of transformed PMMA NPs and dissolved products.
(1) OECD. Global Plastics Outlook: Policy Scenarios to 2060; Organisation for Economic Co-operation and Development: Paris, 2022.
(2) De Tommaso, J.; Dubois, J.-L. Risk Analysis on PMMA Recycling Economics. Polymers 2021, 13 (16), 2724. https://doi.org/10.3390/polym13162724.
(3) [PDF] A Review Article on Acrylic PMMA | Semantic Scholar. https://www.semanticscholar.org/paper/A-Review-Article-on-Acrylic-PMMA-Pawar/ad61219b6ba55928f602f2512027f15f7f8eba20 (accessed 2024-03-12).
(4) Geisler, A. N.; Austin, E.; Nguyen, J.; Hamzavi, I.; Jagdeo, J.; Lim, H. W. Visible Light. Part II: Photoprotection against Visible and Ultraviolet Light. Journal of the American Academy of Dermatology 2021, 84 (5), 1233–1244. https://doi.org/10.1016/j.jaad.2020.11.074.
(5) Gomes, T.; Almeida, A. C.; Georgantzopoulou, A. Characterization of Cell Responses in Rhodomonas Baltica Exposed to PMMA Nanoplastics. Science of The Total Environment 2020, 726, 138547. https://doi.org/10.1016/j.scitotenv.2020.138547.
(6) Jahnke, A.; Arp, H. P. H.; Escher, B. I.; Gewert, B.; Gorokhova, E.; Kühnel, D.; Ogonowski, M.; Potthoff, A.; Rummel, C.; Schmitt-Jansen, M.; Toorman, E.; MacLeod, M. Reducing Uncertainty and Confronting Ignorance about the Possible Impacts of Weathering Plastic in the Marine Environment. Environ. Sci. Technol. Lett. 2017, 4 (3), 85–90. https://doi.org/10.1021/acs.estlett.7b00008.
(7) Zhai, Y.; Bai, J.; Chang, P.; Liu, Z.; Wang, Y.; Liu, G.; Cui, B.; Peijnenburg, W.; Vijver, M. G. Microplastics in Terrestrial Ecosystem: Exploring the Menace to the Soil-Plant-Microbe Interactions. TrAC Trends in Analytical Chemistry 2024, 174, 117667. https://doi.org/10.1016/j.trac.2024.117667.
(8) Ahmed, M. B.; Rahman, Md. S.; Alom, J.; Hasan, MD. S.; Johir, M. A. H.; Mondal, M. I. H.; Lee, D.-Y.; Park, J.; Zhou, J. L.; Yoon, M.-H. Microplastic Particles in the Aquatic Environment: A Systematic Review. Science of The Total Environment 2021, 775, 145793. https://doi.org/10.1016/j.scitotenv.2021.145793.
(9) Horton, A. A.; Walton, A.; Spurgeon, D. J.; Lahive, E.; Svendsen, C. Microplastics in Freshwater and Terrestrial Environments: Evaluating the Current Understanding to Identify the Knowledge Gaps and Future Research Priorities. Science of The Total Environment 2017, 586, 127–141. https://doi.org/10.1016/j.scitotenv.2017.01.190.
(10) Gasperi, J.; Wright, S. L.; Dris, R.; Collard, F.; Mandin, C.; Guerrouache, M.; Langlois, V.; Kelly, F. J.; Tassin, B. Microplastics in Air: Are We Breathing It In? Current Opinion in Environmental Science & Health 2018, 1, 1–5. https://doi.org/10.1016/j.coesh.2017.10.002.
(11) Gaylarde, C. C.; Baptista Neto, J. A.; da Fonseca, E. M. Nanoplastics in Aquatic Systems - Are They More Hazardous than Microplastics? Environmental Pollution 2021, 272, 115950. https://doi.org/10.1016/j.envpol.2020.115950.
(12) Browne, M. A.; Galloway, T.; Thompson, R. Microplastic—an Emerging Contaminant of Potential Concern? Integrated Environmental Assessment and Management 2007, 3 (4), 559–561. https://doi.org/10.1002/ieam.5630030412.
(13) Rillig, M. C.; Kim, S. W.; Kim, T.-Y.; Waldman, W. R. The Global Plastic Toxicity Debt. Environ. Sci. Technol. 2021, 55 (5), 2717–2719. https://doi.org/10.1021/acs.est.0c07781.
(14) Amorim, M. J. B.; Scott-Fordsmand, J. J. Plastic Pollution – A Case Study with Enchytraeus Crypticus – From Micro-to Nanoplastics. Environmental Pollution 2021, 271, 116363. https://doi.org/10.1016/j.envpol.2020.116363.
(15) Li, Q.; Lai, Y.; Yu, S.; Li, P.; Zhou, X.; Dong, L.; Liu, X.; Yao, Z.; Liu, J. Sequential Isolation of Microplastics and Nanoplastics in Environmental Waters by Membrane Filtration, Followed by Cloud-Point Extraction. Anal. Chem. 2021, 93 (10), 4559–4566. https://doi.org/10.1021/acs.analchem.0c04996.
(16) Okoffo, E. D.; Thomas, K. V. Quantitative Analysis of Nanoplastics in Environmental and Potable Waters by Pyrolysis-Gas Chromatography–Mass Spectrometry. Journal of Hazardous Materials 2024, 464, 133013. https://doi.org/10.1016/j.jhazmat.2023.133013.
(17) Xu, Y.; Ou, Q.; Jiao, M.; Liu, G.; van der Hoek, J. P. Identification and Quantification of Nanoplastics in Surface Water and Groundwater by Pyrolysis Gas Chromatography–Mass Spectrometry. Environ. Sci. Technol. 2022, 56 (8), 4988–4997. https://doi.org/10.1021/acs.est.1c07377.
(18) Rånby, B. Basic Reactions in the Photodegradation of Some Important Polymers. Journal of Macromolecular Science, Part A 1993, 30 (9–10), 583–594. https://doi.org/10.1080/10601329308021247.
(19) Bergmann, M.; Gutow, L.; Klages, M. Marine Anthropogenic Litter; Springer Nature, 2015.
(20) Klemchuk, P. P. Degradable Plastics: A Critical Review. Polymer Degradation and Stability 1990, 27 (2), 183–202. https://doi.org/10.1016/0141-3910(90)90108-J.
(21) García-Gil, Á.; Molina-Ramírez, M. D.; García-Muñoz, R. A.; Marasini, R.; Buck, L.; McGuigan, K. G.; Marugán, J. Weathering of Plastic SODIS Containers and the Impact of Ageing on Their Lifetime and Disinfection Efficacy. Chemical Engineering Journal 2022, 435, 134881. https://doi.org/10.1016/j.cej.2022.134881.
(22) Chen, C.; Chen, L.; Li, Y.; Fu, W.; Shi, X.; Duan, J.; Zhang, W. Impacts of Microplastics on Organotins’ Photodegradation in Aquatic Environments. Environmental Pollution 2020, 267, 115686. https://doi.org/10.1016/j.envpol.2020.115686.
(23) Chen, C.; Du, R.; Tang, J.; Wang, B.; Li, F.; Zhang, Z.; Yu, G. Characterization of Microplastic-Derived Dissolved Organic Matter in Freshwater: Effects of Light Irradiation and Polymer Types. Environment International 2024, 185, 108536. https://doi.org/10.1016/j.envint.2024.108536.
(24) Albergamo, V.; Wohlleben, W.; Plata, D. L. Tracking Dynamic Chemical Reactivity Networks with High-Resolution Mass Spectrometry: A Case of Microplastic-Derived Dissolved Organic Carbon. Environ. Sci. Technol. 2024, 58 (9), 4314–4325. https://doi.org/10.1021/acs.est.3c08134.
(25) van Esch, G. J. Plastic Carcinogenesis; Suggestions for the Use of Plastics in Surgery, Orthopedics, Etc... In Potential Carcinogenic Hazards from Drugs; Truhaut, R., Ed.; Springer: Berlin, Heidelberg, 1967; pp 196–203. https://doi.org/10.1007/978-3-642-87898-5_21.
(26) El-Sonbati, A. Thermoplastic Elastomers; BoD – Books on Demand, 2012.
(27) Sehanobish, K. Engineering Plastics and Plastic Composites in Automotive Applications; SAE International, 2009.
(28) Sabourin, V. The Future of the Medical Plastics Market: Opportunities for Growth; Productivity Press: New York, 2021. https://doi.org/10.4324/9781003212898.
(29) Ibrahim, N. I.; Shahar, F. S.; Sultan, M. T. H.; Shah, A. U. M.; Safri, S. N. A.; Mat Yazik, M. H. Overview of Bioplastic Introduction and Its Applications in Product Packaging. Coatings 2021, 11 (11), 1423. https://doi.org/10.3390/coatings11111423.
(30) Kopecká, R.; Kubínová, I.; Sovová, K.; Mravcová, L.; Vítěz, T.; Vítězová, M. Microbial Degradation of Virgin Polyethylene by Bacteria Isolated from a Landfill Site. SN Appl. Sci. 2022, 4 (11), 302. https://doi.org/10.1007/s42452-022-05182-x.
(31) De Tommaso, J.; Dubois, J.-L. Risk Analysis on PMMA Recycling Economics. Polymers 2021, 13 (16), 2724. https://doi.org/10.3390/polym13162724.
(32) Geyer, R.; Jambeck, J. R.; Law, K. L. Production, Use, and Fate of All Plastics Ever Made. Science Advances 2017, 3 (7), e1700782. https://doi.org/10.1126/sciadv.1700782.
(33) Hahladakis, J. N. Delineating and Preventing Plastic Waste Leakage in the Marine and Terrestrial Environment. Environ Sci Pollut Res 2020, 27 (11), 12830–12837. https://doi.org/10.1007/s11356-020-08139-y.
(34) Lebreton, L. C. M.; van der Zwet, J.; Damsteeg, J.-W.; Slat, B.; Andrady, A.; Reisser, J. River Plastic Emissions to the World’s Oceans. Nat Commun 2017, 8 (1), 15611. https://doi.org/10.1038/ncomms15611.
(35) Lung, C. Y. K.; Darvell, B. W. Methyl Methacrylate Monomer–Polymer Equilibrium in Solid Polymer. Dental Materials 2007, 23 (1), 88–94. https://doi.org/10.1016/j.dental.2005.12.004.
(36) Zafar, M. S. Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update. Polymers 2020, 12 (10), 2299. https://doi.org/10.3390/polym12102299.
(37) Bilec M.; Silva de Souza Lima Cano N.; Hossain M. U. Environmental Impacts of Different Circularity Strategies for Plastics: LCA of Plastic Barriers Used During the COVID-19 Pandemic in the U.S. Rochester, NY April 26, 2023. https://doi.org/10.2139/ssrn.4429196.
(38) Wijeyatunga, S. K.; Derr, K. M.; Maladeniya, C. P.; Sauceda-Oloño, P. Y.; Tennyson, A. G.; Smith, R. C. Upcycling Waste PMMA to Durable Composites via a Transesterification-Inverse Vulcanization Process. Journal of Polymer Science 2024, 62 (3), 554–563. https://doi.org/10.1002/pol.20230609.
(39) Zhang, Y.; Cheng, F.; Zhang, T.; Li, C.; Qu, J.; Chen, J.; Peijnenburg, W. J. G. M. Dissolved Organic Matter Enhanced the Aggregation and Oxidation of Nanoplastics under Simulated Sunlight Irradiation in Water. Environ. Sci. Technol. 2022, 56 (5), 3085–3095. https://doi.org/10.1021/acs.est.1c07129.
(40) Gigault, J.; Halle, A. ter; Baudrimont, M.; Pascal, P.-Y.; Gauffre, F.; Phi, T.-L.; El Hadri, H.; Grassl, B.; Reynaud, S. Current Opinion: What Is a Nanoplastic? Environmental Pollution 2018, 235, 1030–1034. https://doi.org/10.1016/j.envpol.2018.01.024.
(41) Sorasan, C.; Edo, C.; González-Pleiter, M.; Fernández-Piñas, F.; Leganés, F.; Rodríguez, A.; Rosal, R. Generation of Nanoplastics during the Photoageing of Low-Density Polyethylene. Environmental Pollution 2021, 289, 117919. https://doi.org/10.1016/j.envpol.2021.117919.
(42) Tirkey, A.; Upadhyay, L. S. B. Microplastics: An Overview on Separation, Identification and Characterization of Microplastics. Marine Pollution Bulletin 2021, 170, 112604. https://doi.org/10.1016/j.marpolbul.2021.112604.
(43) Gonçalves, J. M.; Bebianno, M. J. Nanoplastics Impact on Marine Biota: A Review. Environmental Pollution 2021, 273, 116426. https://doi.org/10.1016/j.envpol.2021.116426.
(44) Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T. S. Microplastics as Contaminants in the Marine Environment: A Review. Marine Pollution Bulletin 2011, 62 (12), 2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025.
(45) González-Pleiter, M.; Tamayo-Belda, M.; Pulido-Reyes, G.; Amariei, G.; Leganés, F.; Rosal, R.; Fernández-Piñas, F. Secondary Nanoplastics Released from a Biodegradable Microplastic Severely Impact Freshwater Environments. Environmental Science: Nano 2019, 6 (5), 1382–1392. https://doi.org/10.1039/C8EN01427B.
(46) Wang, J.; Zhao, X.; Wu, F.; Niu, L.; Tang, Z.; Liang, W.; Zhao, T.; Fang, M.; Wang, H.; Wang, X. Characterization, Occurrence, Environmental Behaviors, and Risks of Nanoplastics in the Aquatic Environment: Current Status and Future Perspectives. Fundamental Research 2021, 1 (3), 317–328. https://doi.org/10.1016/j.fmre.2021.05.001.
(47) Hernandez, L. M.; Xu, E. G.; Larsson, H. C. E.; Tahara, R.; Maisuria, V. B.; Tufenkji, N. Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environ. Sci. Technol. 2019, 53 (21), 12300–12310. https://doi.org/10.1021/acs.est.9b02540.
(48) Duan, J.; Bolan, N.; Li, Y.; Ding, S.; Atugoda, T.; Vithanage, M.; Sarkar, B.; Tsang, D. C. W.; Kirkham, M. B. Weathering of Microplastics and Interaction with Other Coexisting Constituents in Terrestrial and Aquatic Environments. Water Research 2021, 196, 117011. https://doi.org/10.1016/j.watres.2021.117011.
(49) Van Cauwenberghe, L.; Devriese, L.; Galgani, F.; Robbens, J.; Janssen, C. R. Microplastics in Sediments: A Review of Techniques, Occurrence and Effects. Marine Environmental Research 2015, 111, 5–17. https://doi.org/10.1016/j.marenvres.2015.06.007.
(50) Samandra, S.; Johnston, J. M.; Jaeger, J. E.; Symons, B.; Xie, S.; Currell, M.; Ellis, A. V.; Clarke, B. O. Microplastic Contamination of an Unconfined Groundwater Aquifer in Victoria, Australia. Science of The Total Environment 2022, 802, 149727. https://doi.org/10.1016/j.scitotenv.2021.149727.
(51) Ballent, A.; Corcoran, P. L.; Madden, O.; Helm, P. A.; Longstaffe, F. J. Sources and Sinks of Microplastics in Canadian Lake Ontario Nearshore, Tributary and Beach Sediments. Marine Pollution Bulletin 2016, 110 (1), 383–395. https://doi.org/10.1016/j.marpolbul.2016.06.037.
(52) Cai, H.; Xu, E. G.; Du, F.; Li, R.; Liu, J.; Shi, H. Analysis of Environmental Nanoplastics: Progress and Challenges. Chemical Engineering Journal 2021, 410, 128208. https://doi.org/10.1016/j.cej.2020.128208.
(53) Materić, D.; Kasper-Giebl, A.; Kau, D.; Anten, M.; Greilinger, M.; Ludewig, E.; van Sebille, E.; Röckmann, T.; Holzinger, R. Micro- and Nanoplastics in Alpine Snow: A New Method for Chemical Identification and (Semi)Quantification in the Nanogram Range. Environ. Sci. Technol. 2020, 54 (4), 2353–2359. https://doi.org/10.1021/acs.est.9b07540.
(54) Ter Halle, A.; Jeanneau, L.; Martignac, M.; Jardé, E.; Pedrono, B.; Brach, L.; Gigault, J. Nanoplastic in the North Atlantic Subtropical Gyre. Environ. Sci. Technol. 2017, 51 (23), 13689–13697. https://doi.org/10.1021/acs.est.7b03667.
(55) Xu, G.; Cheng, H.; Jones, R.; Feng, Y.; Gong, K.; Li, K.; Fang, X.; Tahir, M. A.; Valev, V. K.; Zhang, L. Surface-Enhanced Raman Spectroscopy Facilitates the Detection of Microplastics <1 Μm in the Environment. Environ. Sci. Technol. 2020, 54 (24), 15594–15603. https://doi.org/10.1021/acs.est.0c02317.
(56) Davranche, M.; Lory, C.; Juge, C. L.; Blancho, F.; Dia, A.; Grassl, B.; El Hadri, H.; Pascal, P.-Y.; Gigault, J. Nanoplastics on the Coast Exposed to the North Atlantic Gyre: Evidence and Traceability. NanoImpact 2020, 20, 100262. https://doi.org/10.1016/j.impact.2020.100262.
(57) Wahl, A.; Le Juge, C.; Davranche, M.; El Hadri, H.; Grassl, B.; Reynaud, S.; Gigault, J. Nanoplastic Occurrence in a Soil Amended with Plastic Debris. Chemosphere 2021, 262, 127784. https://doi.org/10.1016/j.chemosphere.2020.127784.
(58) Lambert, S.; Sinclair, C.; Boxall, A. Occurrence, Degradation, and Effect of Polymer-Based Materials in the Environment. In Reviews of Environmental Contamination and Toxicology, Volume 227; Whitacre, D. M., Ed.; Springer International Publishing: Cham, 2014; pp 1–53. https://doi.org/10.1007/978-3-319-01327-5_1.
(59) Shah, A. A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological Degradation of Plastics: A Comprehensive Review. Biotechnology Advances 2008, 26 (3), 246–265. https://doi.org/10.1016/j.biotechadv.2007.12.005.
(60) Gijsman, P.; Meijers, G.; Vitarelli, G. Comparison of the UV-Degradation Chemistry of Polypropylene, Polyethylene, Polyamide 6 and Polybutylene Terephthalate. Polymer Degradation and Stability 1999, 65 (3), 433–441. https://doi.org/10.1016/S0141-3910(99)00033-6.
(61) D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV Radiation and the Skin. International Journal of Molecular Sciences 2013, 14 (6), 12222–12248. https://doi.org/10.3390/ijms140612222.
(62) Gewert, B.; M. Plassmann, M.; MacLeod, M. Pathways for Degradation of Plastic Polymers Floating in the Marine Environment. Environmental Science: Processes & Impacts 2015, 17 (9), 1513–1521. https://doi.org/10.1039/C5EM00207A.
(63) Ali, S. S.; Elsamahy, T.; Koutra, E.; Kornaros, M.; El-Sheekh, M.; Abdelkarim, E. A.; Zhu, D.; Sun, J. Degradation of Conventional Plastic Wastes in the Environment: A Review on Current Status of Knowledge and Future Perspectives of Disposal. Science of The Total Environment 2021, 771, 144719. https://doi.org/10.1016/j.scitotenv.2020.144719.
(64) Rånby, B. Photodegradation and Photo-Oxidation of Synthetic Polymers. Journal of Analytical and Applied Pyrolysis 1989, 15, 237–247. https://doi.org/10.1016/0165-2370(89)85037-5.
(65) Grigoriadou, I.; Paraskevopoulos, K. M.; Chrissafis, K.; Pavlidou, E.; Stamkopoulos, T.-G.; Bikiaris, D. Effect of Different Nanoparticles on HDPE UV Stability. Polymer Degradation and Stability 2011, 96 (1), 151–163. https://doi.org/10.1016/j.polymdegradstab.2010.10.001.
(66) Singh, B.; Sharma, N. Mechanistic Implications of Plastic Degradation. Polymer Degradation and Stability 2008, 93 (3), 561–584. https://doi.org/10.1016/j.polymdegradstab.2007.11.008.
(67) Lee, Q. Y.; Li, H. Photocatalytic Degradation of Plastic Waste: A Mini Review. Micromachines 2021, 12 (8), 907. https://doi.org/10.3390/mi12080907.
(68) Xu, Y.; Huang, D.; Liu, P.; Ouyang, Z.; Jia, H.; Guo, X. The Characteristics of Dissolved Organic Matter Release from UV-Aged Microplastics and Its Cytotoxicity on Human Colonic Adenocarcinoma Cells. Science of The Total Environment 2022, 826, 154177. https://doi.org/10.1016/j.scitotenv.2022.154177.
(69) Zhu, L.; Zhao, S.; Bittar, T. B.; Stubbins, A.; Li, D. Photochemical Dissolution of Buoyant Microplastics to Dissolved Organic Carbon: Rates and Microbial Impacts. Journal of Hazardous Materials 2020, 383, 121065. https://doi.org/10.1016/j.jhazmat.2019.121065.
(70) Lee, Y. K.; Murphy, K. R.; Hur, J. Fluorescence Signatures of Dissolved Organic Matter Leached from Microplastics: Polymers and Additives. Environ. Sci. Technol. 2020, 54 (19), 11905–11914. https://doi.org/10.1021/acs.est.0c00942.
(71) Ouyang, Z.; Zhang, Z.; Jing, Y.; Bai, L.; Zhao, M.; Hao, X.; Li, X.; Guo, X. The Photo-Aging of Polyvinyl Chloride Microplastics under Different UV Irradiations. Gondwana Research 2022, 108, 72–80. https://doi.org/10.1016/j.gr.2021.07.010.
(72) Ren, X.; Han, Y.; Zhao, H.; Zhang, Z.; Tsui, T.-H.; Wang, Q. Elucidating the Characteristic of Leachates Released from Microplastics under Different Aging Conditions: Perspectives of Dissolved Organic Carbon Fingerprints and Nano-Plastics. Water Research 2023, 233, 119786. https://doi.org/10.1016/j.watres.2023.119786.
(73) Gewert, B.; Plassmann, M.; Sandblom, O.; MacLeod, M. Identification of Chain Scission Products Released to Water by Plastic Exposed to Ultraviolet Light. Environ. Sci. Technol. Lett. 2018, 5 (5), 272–276. https://doi.org/10.1021/acs.estlett.8b00119.
(74) Ward, C. P.; Armstrong, C. J.; Walsh, A. N.; Jackson, J. H.; Reddy, C. M. Sunlight Converts Polystyrene to Carbon Dioxide and Dissolved Organic Carbon. Environ. Sci. Technol. Lett. 2019, 6 (11), 669–674. https://doi.org/10.1021/acs.estlett.9b00532.
(75) Shi, Y.; Liu, P.; Wu, X.; Shi, H.; Huang, H.; Wang, H.; Gao, S. Insight into Chain Scission and Release Profiles from Photodegradation of Polycarbonate Microplastics. Water Research 2021, 195, 116980. https://doi.org/10.1016/j.watres.2021.116980.
(76) Reineccius, J.; Schönke, M.; Waniek, J. J. Abiotic Long-Term Simulation of Microplastic Weathering Pathways under Different Aqueous Conditions. Environ. Sci. Technol. 2023, 57 (2), 963–975. https://doi.org/10.1021/acs.est.2c05746.
(77) Miranda, M. N.; Sampaio, M. J.; Tavares, P. B.; Silva, A. M. T.; Pereira, M. F. R. Aging Assessment of Microplastics (LDPE, PET and uPVC) under Urban Environment Stressors. Science of The Total Environment 2021, 796, 148914. https://doi.org/10.1016/j.scitotenv.2021.148914.
(78) Wang, H.; Zhu, J.; He, Y.; Wang, J.; Zeng, N.; Zhan, X. Photoaging Process and Mechanism of Four Commonly Commercial Microplastics. Journal of Hazardous Materials 2023, 451, 131151. https://doi.org/10.1016/j.jhazmat.2023.131151.
(79) Zhu, K.; Jia, H.; Sun, Y.; Dai, Y.; Zhang, C.; Guo, X.; Wang, T.; Zhu, L. Long-Term Phototransformation of Microplastics under Simulated Sunlight Irradiation in Aquatic Environments: Roles of Reactive Oxygen Species. Water Research 2020, 173, 115564. https://doi.org/10.1016/j.watres.2020.115564.
(80) Zhu, K.; Jia, H.; Zhao, S.; Xia, T.; Guo, X.; Wang, T.; Zhu, L. Formation of Environmentally Persistent Free Radicals on Microplastics under Light Irradiation. Environ. Sci. Technol. 2019, 53 (14), 8177–8186. https://doi.org/10.1021/acs.est.9b01474.
(81) Wu, X.; Zhao, X.; Chen, R.; Liu, P.; Liang, W.; Wang, J.; Shi, D.; Teng, M.; Wang, X.; Gao, S. Size-Dependent Long-Term Weathering Converting Floating Polypropylene Macro- and Microplastics into Nanoplastics in Coastal Seawater Environments. Water Research 2023, 242, 120165. https://doi.org/10.1016/j.watres.2023.120165.
(82) Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J. H.; Abu-Omar, M.; Scott, S. L.; Suh, S. Degradation Rates of Plastics in the Environment. ACS Sustainable Chem. Eng. 2020, 8 (9), 3494–3511. https://doi.org/10.1021/acssuschemeng.9b06635.
(83) Tuttle, E.; Wiman, C.; Muñoz, S.; Law, K. L.; Stubbins, A. Sunlight-Driven Photochemical Removal of Polypropylene Microplastics from Surface Waters Follows Linear Kinetics and Does Not Result in Fragmentation. Environ. Sci. Technol. 2024. https://doi.org/10.1021/acs.est.3c07161.
(84) Khaled, A.; Rivaton, A.; Richard, C.; Jaber, F.; Sleiman, M. Phototransformation of Plastic Containing Brominated Flame Retardants: Enhanced Fragmentation and Release of Photoproducts to Water and Air. Environ. Sci. Technol. 2018, 52 (19), 11123–11131. https://doi.org/10.1021/acs.est.8b03172.
(85) Duan, J.; Li, Y.; Gao, J.; Cao, R.; Shang, E.; Zhang, W. ROS-Mediated Photoaging Pathways of Nano- and Micro-Plastic Particles under UV Irradiation. Water Research 2022, 216, 118320. https://doi.org/10.1016/j.watres.2022.118320.
(86) Wu, X.; Liu, P.; Shi, H.; Wang, H.; Huang, H.; Shi, Y.; Gao, S. Photo Aging and Fragmentation of Polypropylene Food Packaging Materials in Artificial Seawater. Water Research 2021, 188, 116456. https://doi.org/10.1016/j.watres.2020.116456.
(87) Syranidou, E.; Karkanorachaki, K.; Barouta, D.; Papadaki, E.; Moschovas, D.; Avgeropoulos, A.; Kalogerakis, N. Relationship between the Carbonyl Index (CI) and Fragmentation of Polyolefin Plastics during Aging. Environ. Sci. Technol. 2023, 57 (21), 8130–8138. https://doi.org/10.1021/acs.est.3c01430.
(88) Conradie, W.; Dorfling, C.; Chimphango, A.; Booth, A. M.; Sørensen, L.; Akdogan, G. Investigating the Physicochemical Property Changes of Plastic Packaging Exposed to UV Irradiation and Different Aqueous Environments. Microplastics 2022, 1 (3), 456–476. https://doi.org/10.3390/microplastics1030033.
(89) Wang, C.; Gu, X.; Dong, R.; Chen, Z.; Jin, X.; Gao, J.; Ok, Y. S.; Gu, C. Natural Solar Irradiation Produces Fluorescent and Biodegradable Nanoplastics. Environ. Sci. Technol. 2023, 57 (16), 6626–6635. https://doi.org/10.1021/acs.est.2c07537.
(90) Zhang, L.; Qin, Z.; Bai, H.; Xue, M.; Tang, J. Photochemically Induced Aging of Polystyrene Nanoplastics and Its Impact on Norfloxacin Adsorption Behavior. Science of The Total Environment 2024, 930, 172511. https://doi.org/10.1016/j.scitotenv.2024.172511.
(91) Ou, Q.; Xu, Y.; Wang, X.; van der Hoek, J. P.; Yu, G.; Liu, G. Dissolved Black Carbon Facilitates the Photodegradation of Microplastics via Molecular Weight-Dependent Generation of Reactive Intermediates. Environ. Sci. Technol. 2024. https://doi.org/10.1021/acs.est.4c03831.
(92) Song, Y. K.; Hong, S. H.; Eo, S.; Shim, W. J. Fragmentation of Nano- and Microplastics from Virgin- and Additive-Containing Polypropylene by Accelerated Photooxidation. Environmental Pollution 2023, 327, 121590. https://doi.org/10.1016/j.envpol.2023.121590.
(93) Li, Y.; Zhang, Y.; Su, F.; Wang, Y.; Peng, L.; Liu, D. Adsorption Behaviour of Microplastics on the Heavy Metal Cr(VI) before and after Ageing. Chemosphere 2022, 302, 134865. https://doi.org/10.1016/j.chemosphere.2022.134865.
(94) Lin, W.-H.; Kuo, J.; Lo, S.-L. Effect of Light Irradiation on Heavy Metal Adsorption onto Microplastics. Chemosphere 2021, 285, 131457. https://doi.org/10.1016/j.chemosphere.2021.131457.
(95) Yang, J.; Cang, L.; Sun, Q.; Dong, G.; Ata-Ul-Karim, S. T.; Zhou, D. Effects of Soil Environmental Factors and UV Aging on Cu2+ Adsorption on Microplastics. Environ Sci Pollut Res 2019, 26 (22), 23027–23036. https://doi.org/10.1007/s11356-019-05643-8.
(96) Stubbins, A.; Zhu, L.; Zhao, S.; Spencer, R. G. M.; Podgorski, D. C. Molecular Signatures of Dissolved Organic Matter Generated from the Photodissolution of Microplastics in Sunlit Seawater. Environ. Sci. Technol. 2023, 57 (48), 20097–20106. https://doi.org/10.1021/acs.est.1c03592.
(97) Lee, Y. K.; Romera-Castillo, C.; Hong, S.; Hur, J. Characteristics of Microplastic Polymer-Derived Dissolved Organic Matter and Its Potential as a Disinfection Byproduct Precursor. Water Research 2020, 175, 115678. https://doi.org/10.1016/j.watres.2020.115678.
(98) Lee, Y. K.; He, W.; Guo, H.; Karanfil, T.; Hur, J. Effects of Organic Additives on Spectroscopic and Molecular-Level Features of Photo-Induced Dissolved Organic Matter from Microplastics. Water Research 2023, 242, 120272. https://doi.org/10.1016/j.watres.2023.120272.
(99) Su, J.; Ruan, J.; Luo, D.; Wang, J.; Huang, Z.; Yang, X.; Zhang, Y.; Zeng, Q.; Li, Y.; Huang, W.; Cui, L.; Chen, C. Differential Photoaging Effects on Colored Nanoplastics in Aquatic Environments: Physicochemical Properties and Aggregation Kinetics. Environ. Sci. Technol. 2023, 57 (41), 15656–15666. https://doi.org/10.1021/acs.est.3c04808.
(100) Choi, N. E.; Lee, Y. K.; Oh, H.; Hur, J. Photo-Induced Leaching Behaviors and Biodegradability of Dissolved Organic Matter from Microplastics and Terrestrial-Sourced Particles. Chemosphere 2024, 355, 141826. https://doi.org/10.1016/j.chemosphere.2024.141826.
(101) Song, F.; Li, T.; Hur, J.; Shi, Q.; Wu, F.; He, W.; Shi, D.; He, C.; Zhou, L.; Ruan, M.; Cao, Y. Molecular-Level Insights into the Heterogeneous Variations and Dynamic Formation Mechanism of Leached Dissolved Organic Matter during the Photoaging of Polystyrene Microplastics. Water Research 2023, 242, 120114. https://doi.org/10.1016/j.watres.2023.120114.
(102) Wu, M.; Ma, Y.; Xie, H.; Ji, R. Photodissolution of Submillimeter-Sized Microplastics and Its Dependences on Temperature and Light Composition. Science of The Total Environment 2022, 848, 157714. https://doi.org/10.1016/j.scitotenv.2022.157714.
(103) Wang, J.; Cai, R. Solar Radiation Stimulates Release of Semi-Labile Dissolved Organic Matter from Microplastics. Front. Mar. Sci. 2023, 10. https://doi.org/10.3389/fmars.2023.1284280.
(104) Lee, Y. K.; Hong, S.; Hur, J. Copper-Binding Properties of Microplastic-Derived Dissolved Organic Matter Revealed by Fluorescence Spectroscopy and Two-Dimensional Correlation Spectroscopy. Water Research 2021, 190, 116775. https://doi.org/10.1016/j.watres.2020.116775.
(105) Lee, Y. K.; Hur, J. Adsorption of Microplastic-Derived Organic Matter onto Minerals. Water Research 2020, 187, 116426. https://doi.org/10.1016/j.watres.2020.116426.
(106) Zhang, J.; Hou, X.; Zhang, K.; Deng, Y.; Xiao, Q.; Gao, Y.; Zhou, X.; Yan, B. Deciphering Fluorescent and Molecular Fingerprint of Dissolved Organic Matter Leached from Microplastics in Water. Water Research 2024, 250, 121047. https://doi.org/10.1016/j.watres.2023.121047.
(107) Chen, H.; Shan, X.; Qiu, X.; Ding, L.; Liang, X.; Guo, X. High-Resolution Mass Spectrometry Combined with Reactive Oxygen Species Reveals Differences in Photoreactivity of Dissolved Organic Matter from Microplastic Sources in Aqueous Environments. Environ. Sci. Technol. 2024, 58 (23), 10334–10346. https://doi.org/10.1021/acs.est.4c03901.
(108) Yuan, M.; Xiang, H.; Tong, Y.; Zhou, K.; Peng, C.; Chen, W. Spectroscopic Tracking of the Characteristics of Microplastic-Derived Dissolved Organic Matter. Separations 2023, 10 (2), 101. https://doi.org/10.3390/separations10020101.
(109) Walsh, A. N.; Reddy, C. M.; Niles, S. F.; McKenna, A. M.; Hansel, C. M.; Ward, C. P. Plastic Formulation Is an Emerging Control of Its Photochemical Fate in the Ocean. Environ. Sci. Technol. 2021, 55 (18), 12383–12392. https://doi.org/10.1021/acs.est.1c02272.
(110) Romera-Castillo, C.; Birnstiel, S.; Álvarez-Salgado, X. A.; Sebastián, M. Aged Plastic Leaching of Dissolved Organic Matter Is Two Orders of Magnitude Higher Than Virgin Plastic Leading to a Strong Uplift in Marine Microbial Activity. Front. Mar. Sci. 2022, 9. https://doi.org/10.3389/fmars.2022.861557.
(111) Delre, A.; Goudriaan, M.; Morales, V. H.; Vaksmaa, A.; Ndhlovu, R. T.; Baas, M.; Keijzer, E.; de Groot, T.; Zeghal, E.; Egger, M.; Röckmann, T.; Niemann, H. Plastic Photodegradation under Simulated Marine Conditions. Marine Pollution Bulletin 2023, 187, 114544. https://doi.org/10.1016/j.marpolbul.2022.114544.
(112) Yang, X.; Huang, G.; Chen, Z.; Feng, Q.; An, C.; Lyu, L.; Bi, H.; Zhou, S. Spotlight on the Vertical Migration of Aged Microplastics in Coastal Waters. Journal of Hazardous Materials 2024, 469, 134040. https://doi.org/10.1016/j.jhazmat.2024.134040.
(113) Royer, S.-J.; Ferrón, S.; Wilson, S. T.; Karl, D. M. Production of Methane and Ethylene from Plastic in the Environment. PLOS ONE 2018, 13 (8), e0200574. https://doi.org/10.1371/journal.pone.0200574.
(114) Zhu, L.; Zhao, S.; Bittar, T. B.; Stubbins, A.; Li, D. Photochemical Dissolution of Buoyant Microplastics to Dissolved Organic Carbon: Rates and Microbial Impacts. Journal of Hazardous Materials 2020, 383, 121065. https://doi.org/10.1016/j.jhazmat.2019.121065.
(115) Ouyang, Z.; Zhang, Z.; Jing, Y.; Bai, L.; Zhao, M.; Hao, X.; Li, X.; Guo, X. The Photo-Aging of Polyvinyl Chloride Microplastics under Different UV Irradiations. Gondwana Research 2022, 108, 72–80. https://doi.org/10.1016/j.gr.2021.07.010.
(116) Wang, Q.; Zhang, Y.; Wangjin, X.; Wang, Y.; Meng, G.; Chen, Y. The Adsorption Behavior of Metals in Aqueous Solution by Microplastics Effected by UV Radiation. Journal of Environmental Sciences 2020, 87, 272–280. https://doi.org/10.1016/j.jes.2019.07.006.
(117) Xu, Z.; Ye, Y.; Tang, G.; Liu, Y.; Yang, R. Effect of Alkylated Surface Modified Silica Nanoparticles on Degradation Products of PP during Photooxidation Aging: A Py-GC-MS Analysis. Journal of Analytical and Applied Pyrolysis 2023, 169, 105862. https://doi.org/10.1016/j.jaap.2023.105862.
(118) Royer, S.-J.; Ferrón, S.; Wilson, S. T.; Karl, D. M. Production of Methane and Ethylene from Plastic in the Environment. PLOS ONE 2018, 13 (8), e0200574. https://doi.org/10.1371/journal.pone.0200574.
(119) Bianco, A.; Sordello, F.; Ehn, M.; Vione, D.; Passananti, M. Degradation of Nanoplastics in the Environment: Reactivity and Impact on Atmospheric and Surface Waters. Science of The Total Environment 2020, 742, 140413. https://doi.org/10.1016/j.scitotenv.2020.140413.
(120) Torikai, A.; Hasegawa, H. Accelerated Photodegradation of Poly(Vinyl Chloride). Polymer Degradation and Stability 1999, 63 (3), 441–445. https://doi.org/10.1016/S0141-3910(98)00125-6.
(121) Ding, L.; Yu, X.; Guo, X.; Zhang, Y.; Ouyang, Z.; Liu, P.; Zhang, C.; Wang, T.; Jia, H.; Zhu, L. The Photodegradation Processes and Mechanisms of Polyvinyl Chloride and Polyethylene Terephthalate Microplastic in Aquatic Environments: Important Role of Clay Minerals. Water Research 2022, 208, 117879. https://doi.org/10.1016/j.watres.2021.117879.
(122) Tang, C.-C.; Chen, H.-I.; Brimblecombe, P.; Lee, C.-L. Textural, Surface and Chemical Properties of Polyvinyl Chloride Particles Degraded in a Simulated Environment. Marine Pollution Bulletin 2018, 133, 392–401. https://doi.org/10.1016/j.marpolbul.2018.05.062.
(123) Suhrhoff, T. J.; Scholz-Böttcher, B. M. Qualitative Impact of Salinity, UV Radiation and Turbulence on Leaching of Organic Plastic Additives from Four Common Plastics — A Lab Experiment. Marine Pollution Bulletin 2016, 102 (1), 84–94. https://doi.org/10.1016/j.marpolbul.2015.11.054.
(124) Fan, X.; Zou, Y.; Geng, N.; Liu, J.; Hou, J.; Li, D.; Yang, C.; Li, Y. Investigation on the Adsorption and Desorption Behaviors of Antibiotics by Degradable MPs with or without UV Ageing Process. Journal of Hazardous Materials 2021, 401, 123363. https://doi.org/10.1016/j.jhazmat.2020.123363.
(125) Wang, Z.; He, H.; Zhai, Y.; Xu, Z.; Chen, Y.; Liu, X. Photoaging Processes and Mechanisms of Polyolefin Microplastics. Separation and Purification Technology 2025, 353, 128314. https://doi.org/10.1016/j.seppur.2024.128314.
(126) Monsores, K. G. de C.; Silva, A. O. da; Oliveira, S. de S. A.; Rodrigues, J. G. P.; Weber, R. P. Influence of Ultraviolet Radiation on Polymethylmethacrylate (PMMA). Journal of Materials Research and Technology 2019, 8 (5), 3713–3718. https://doi.org/10.1016/j.jmrt.2019.06.023.
(127) Yao, X. F.; Liu, D. L.; Yeh, H. Y. Mechanical Properties and Gradient Variations of Polymers under Ultraviolet Radiation. Journal of Applied Polymer Science 2007, 106 (5), 3253–3258. https://doi.org/10.1002/app.26995.
(128) Çaykara, T.; Güven, O. UV Degradation of Poly(Methyl Methacrylate) and Its Vinyltriethoxysilane Containing Copolymers. Polymer Degradation and Stability 1999, 65 (2), 225–229. https://doi.org/10.1016/S0141-3910(99)00008-7.
(129) Kim, I.-S.; Cho, H.; Sohn, K.-S.; Kim, K.; Kim, S. A Study on the Severe Crazing Phenomenon of the PMMA Canopy under Prolonged Exposure to Tropical Climates. Engineering Failure Analysis 2021, 129, 105719. https://doi.org/10.1016/j.engfailanal.2021.105719.
(130) Torikai, A.; Ohno, M.; Fueki, K. Photodegradation of Poly(Methyl Methacrylate) by Monochromatic Light: Quantum Yield, Effect of Wavelengths, and Light Intensity. Journal of Applied Polymer Science 1990, 41 (5–6), 1023–1032. https://doi.org/10.1002/app.1990.070410513.
(131) Mitsuoka, T.; Torikai, A.; Fueki, K. Wavelength Sensitivity of the Photodegradation of Poly(Methyl Methacrylate). Journal of Applied Polymer Science 1993, 47 (6), 1027–1032. https://doi.org/10.1002/app.1993.070470609.
(132) Kaczmarek, H.; Kamińska, A.; van Herk, A. Photooxidative Degradation of Poly(Alkyl Methacrylate)s. European Polymer Journal 2000, 36 (4), 767–777. https://doi.org/10.1016/S0014-3057(99)00125-1.
(133) Shen, M.; Zhang, Y.; Zhu, Y.; Song, B.; Zeng, G.; Hu, D.; Wen, X.; Ren, X. Recent Advances in Toxicological Research of Nanoplastics in the Environment: A Review. Environmental Pollution 2019, 252, 511–521. https://doi.org/10.1016/j.envpol.2019.05.102.
(134) Pelegrini, K.; Pereira, T. C. B.; Maraschin, T. G.; Teodoro, L. D. S.; Basso, N. R. D. S.; De Galland, G. L. B.; Ligabue, R. A.; Bogo, M. R. Micro- and Nanoplastic Toxicity: A Review on Size, Type, Source, and Test-Organism Implications. Science of The Total Environment 2023, 878, 162954. https://doi.org/10.1016/j.scitotenv.2023.162954.
(135) Venâncio, C.; Ferreira, I.; Martins, M. A.; Soares, A. M. V. M.; Lopes, I.; Oliveira, M. The Effects of Nanoplastics on Marine Plankton: A Case Study with Polymethylmethacrylate. Ecotoxicol Environ Saf 2019, 184, 109632. https://doi.org/10.1016/j.ecoenv.2019.109632.
(136) Jiang, X.; Chen, H.; Liao, Y.; Ye, Z.; Li, M.; Klobučar, G. Ecotoxicity and Genotoxicity of Polystyrene Microplastics on Higher Plant Vicia Faba. Environmental Pollution 2019, 250, 831–838. https://doi.org/10.1016/j.envpol.2019.04.055.
(137) Li, L.; Luo, Y.; Peijnenburg, W. J. G. M.; Li, R.; Yang, J.; Zhou, Q. Confocal Measurement of Microplastics Uptake by Plants. MethodsX 2020, 7, 100750. https://doi.org/10.1016/j.mex.2019.11.023.
(138) Li, L.; Luo, Y.; Li, R.; Zhou, Q.; Peijnenburg, W. J. G. M.; Yin, N.; Yang, J.; Tu, C.; Zhang, Y. Effective Uptake of Submicrometre Plastics by Crop Plants via a Crack-Entry Mode. Nat Sustain 2020, 3 (11), 929–937. https://doi.org/10.1038/s41893-020-0567-9.
(139) Bosker, T.; Bouwman, L. J.; Brun, N. R.; Behrens, P.; Vijver, M. G. Microplastics Accumulate on Pores in Seed Capsule and Delay Germination and Root Growth of the Terrestrial Vascular Plant Lepidium Sativum. Chemosphere 2019, 226, 774–781. https://doi.org/10.1016/j.chemosphere.2019.03.163.
(140) Wang, C.; Luo, Q.; Zhang, J.; Zhang, X.; Yang, N.; Feng, L. Toxic Effects of Microplastics and Nanoplastics on Plants: A Global Meta-Analysis. Environmental Pollution 2023, 337, 122593. https://doi.org/10.1016/j.envpol.2023.122593.
(141) Giorgetti, L.; Spanò, C.; Muccifora, S.; Bottega, S.; Barbieri, F.; Bellani, L.; Ruffini Castiglione, M. Exploring the Interaction between Polystyrene Nanoplastics and Allium Cepa during Germination: Internalization in Root Cells, Induction of Toxicity and Oxidative Stress. Plant Physiology and Biochemistry 2020, 149, 170–177. https://doi.org/10.1016/j.plaphy.2020.02.014.
(142) Vejerano, E. P.; Rao, G.; Khachatryan, L.; Cormier, S. A.; Lomnicki, S. Environmentally Persistent Free Radicals: Insights on a New Class of Pollutants. Environ. Sci. Technol. 2018, 52 (5), 2468–2481. https://doi.org/10.1021/acs.est.7b04439.
(143) He, S.; Wang, J.; Zhou, L.; Mao, Z.; Zhang, X.; Cai, J.; Huang, P. Enhanced Hepatic Metabolic Perturbation of Polystyrene Nanoplastics by UV Irradiation-Induced Hydroxyl Radical Generation. Journal of Environmental Sciences 2024, 142, 259–268. https://doi.org/10.1016/j.jes.2023.06.030.
(144) Errázuriz León, R.; Araya Salcedo, V. A.; Novoa San Miguel, F. J.; Llanquinao Tardio, C. R. A.; Tobar Briceño, A. A.; Cherubini Fouilloux, S. F.; de Matos Barbosa, M.; Saldías Barros, C. A.; Waldman, W. R.; Espinosa-Bustos, C.; Hornos Carneiro, M. F. Photoaged Polystyrene Nanoplastics Exposure Results in Reproductive Toxicity Due to Oxidative Damage in Caenorhabditis Elegans. Environmental Pollution 2024, 348, 123816. https://doi.org/10.1016/j.envpol.2024.123816.
(145) Xu, Y.; Ou, Q.; van der Hoek, J. P.; Liu, G.; Lompe, K. M. Photo-Oxidation of Micro- and Nanoplastics: Physical, Chemical, and Biological Effects in Environments. Environ. Sci. Technol. 2024, 58 (2), 991–1009. https://doi.org/10.1021/acs.est.3c07035.
(146) Huang, Y.; Ding, J.; Zhang, G.; Liu, S.; Zou, H.; Wang, Z.; Zhu, W.; Geng, J. Interactive Effects of Microplastics and Selected Pharmaceuticals on Red Tilapia: Role of Microplastic Aging. Science of The Total Environment 2021, 752, 142256. https://doi.org/10.1016/j.scitotenv.2020.142256.
(147) Kim, T.-K.; Jang, M.; Hwang, Y. S. Adsorption of Benzalkonium Chlorides onto Polyethylene Microplastics: Mechanism and Toxicity Evaluation. Journal of Hazardous Materials 2022, 426, 128076. https://doi.org/10.1016/j.jhazmat.2021.128076.
(148) Wang, X.; Zheng, H.; Zhao, J.; Luo, X.; Wang, Z.; Xing, B. Photodegradation Elevated the Toxicity of Polystyrene Microplastics to Grouper (Epinephelus Moara) through Disrupting Hepatic Lipid Homeostasis. Environ. Sci. Technol. 2020, 54 (10), 6202–6212. https://doi.org/10.1021/acs.est.9b07016.
(149) Tetu, S. G.; Sarker, I.; Schrameyer, V.; Pickford, R.; Elbourne, L. D. H.; Moore, L. R.; Paulsen, I. T. Plastic Leachates Impair Growth and Oxygen Production in Prochlorococcus, the Ocean’s Most Abundant Photosynthetic Bacteria. Commun Biol 2019, 2 (1), 1–9. https://doi.org/10.1038/s42003-019-0410-x.
(150) Cervera, M. I.; Portolés, T.; Pitarch, E.; Beltrán, J.; Hernández, F. Application of Gas Chromatography Time-of-Flight Mass Spectrometry for Target and Non-Target Analysis of Pesticide Residues in Fruits and Vegetables. Journal of Chromatography A 2012, 1244, 168–177. https://doi.org/10.1016/j.chroma.2012.04.063.
(151) Terzic, S.; Ahel, M. Nontarget Analysis of Polar Contaminants in Freshwater Sediments Influenced by Pharmaceutical Industry Using Ultra-High-Pressure Liquid Chromatography–Quadrupole Time-of-Flight Mass Spectrometry. Environmental Pollution 2011, 159 (2), 557–566. https://doi.org/10.1016/j.envpol.2010.10.009.
(152) Fu, Y.; Zhao, C.; Lu, X.; Xu, G. Nontargeted Screening of Chemical Contaminants and Illegal Additives in Food Based on Liquid Chromatography–High Resolution Mass Spectrometry. TrAC Trends in Analytical Chemistry 2017, 96, 89–98. https://doi.org/10.1016/j.trac.2017.07.014.
(153) Chiaia-Hernández, A. C.; Günthardt, B. F.; Frey, M. P.; Hollender, J. Unravelling Contaminants in the Anthropocene Using Statistical Analysis of Liquid Chromatography–High-Resolution Mass Spectrometry Nontarget Screening Data Recorded in Lake Sediments. Environ. Sci. Technol. 2017, 51 (21), 12547–12556. https://doi.org/10.1021/acs.est.7b03357.
(154) Albergamo, V.; Escher, B. I.; Schymanski, E. L.; Helmus, R.; Dingemans, M. M. L.; Cornelissen, E. R.; Kraak, M. H. S.; Hollender, J.; Voogt, P. de. Evaluation of Reverse Osmosis Drinking Water Treatment of Riverbank Filtrate Using Bioanalytical Tools and Non-Target Screening. Environ. Sci.: Water Res. Technol. 2019, 6 (1), 103–116. https://doi.org/10.1039/C9EW00741E.
(155) Schollée, J. E.; Bourgin, M.; von Gunten, U.; McArdell, C. S.; Hollender, J. Non-Target Screening to Trace Ozonation Transformation Products in a Wastewater Treatment Train Including Different Post-Treatments. Water Research 2018, 142, 267–278. https://doi.org/10.1016/j.watres.2018.05.045.
(156) Hollender, J.; Schymanski, E. L.; Singer, H. P.; Ferguson, P. L. Nontarget Screening with High Resolution Mass Spectrometry in the Environment: Ready to Go? Environ. Sci. Technol. 2017, 51 (20), 11505–11512. https://doi.org/10.1021/acs.est.7b02184.
(157) Qiu, S.-Q.; Huang, G.-Y.; Fang, G.-Z.; Li, X.-P.; Lei, D.-Q.; Shi, W.-J.; Xie, L.; Ying, G.-G. Chemical Characteristics and Toxicological Effects of Leachates from Plastics under Simulated Seawater and Fish Digest. Water Research 2022, 209, 117892. https://doi.org/10.1016/j.watres.2021.117892.
(158) Non-Targeted Analysis for Organic Components of Microplastic Leachates. Science of The Total Environment 2022, 816, 151598. https://doi.org/10.1016/j.scitotenv.2021.151598.
(159) Wang, H.; He, Y.; Zheng, Q.; Yang, Q.; Wang, J.; Zhu, J.; Zhan, X. Toxicity of Photoaged Polyvinyl Chloride Microplastics to Wheat Seedling Roots. Journal of Hazardous Materials 2024, 463, 132816. https://doi.org/10.1016/j.jhazmat.2023.132816.
(160) Zhang, T.; Wang, M.; Han, Y.; Liu, J.; Zhang, Z.; Wang, M.; Liu, P.; Gao, S. Particle Sizes Crucially Affected the Release of Additives from Tire Wear Particles during UV Irradiation and Mechanical Abrasion. Journal of Hazardous Materials 2024, 470, 134106. https://doi.org/10.1016/j.jhazmat.2024.134106.
(161) Shi, Y.; Huang, H.; Zheng, L.; Tian, Y.; Gong, Z.; Wang, J.; Li, W.; Gao, S. Releases of Microplastics and Chemicals from Nonwoven Polyester Fabric-Based Polyurethane Synthetic Leather by Photoaging. Science of The Total Environment 2023, 902, 166584. https://doi.org/10.1016/j.scitotenv.2023.166584.
(162) Schymanski, E. L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H. P.; Hollender, J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48 (4), 2097–2098. https://doi.org/10.1021/es5002105.
(163) Röhler, L.; Schlabach, M.; Haglund, P.; Breivik, K.; Kallenborn, R.; Bohlin-Nizzetto, P. Non-Target and Suspect Characterisation of Organic Contaminants in Arctic Air – Part 2: Application of a New Tool for Identification and Prioritisation of Chemicals of Emerging Arctic Concern in Air. Atmospheric Chemistry and Physics 2020, 20 (14), 9031–9049. https://doi.org/10.5194/acp-20-9031-2020.
(164) Bejgarn, S.; MacLeod, M.; Bogdal, C.; Breitholtz, M. Toxicity of Leachate from Weathering Plastics: An Exploratory Screening Study with Nitocra Spinipes. Chemosphere 2015, 132, 114–119. https://doi.org/10.1016/j.chemosphere.2015.03.010.
(165) Lee, S.; Alam, M. B.; Lee, S.-H.; Jung, M.-J.; Shim, W. J.; Kim, S. Identification and Quantification of Photodegradation Products of Disposed Expanded Polystyrene Buoy Used in Aquaculture. Marine Pollution Bulletin 2023, 192, 114998. https://doi.org/10.1016/j.marpolbul.2023.114998.
(166) Hou, W.-C.; He, C.-J.; Wang, Y.-S.; Wang, D. K.; Zepp, R. G. Phototransformation-Induced Aggregation of Functionalized Single-Walled Carbon Nanotubes: The Importance of Amorphous Carbon. Environ. Sci. Technol. 2016, 50 (7), 3494–3502. https://doi.org/10.1021/acs.est.5b04727.
(167) Tsai, N. T. The Photochemical Fate of Poly (Methyl Methacrylate) Nanoplastics in Water, National Cheng Kung University, Department of Environmental Engineering, Tainan, Taiwan, 2023.
(168) Chang, K.-C.; Yen, W.-L.; Liu, C.-W. Solar Global Radiation Information of Taiwan in Terms of the Typical Meteorological Year between 2004 and 2013. Journal of Taiwan Energy 2016, Volume 3 (No. 1), 89–101.
(169) Rial-Otero, R.; Galesio, M.; Capelo, J.-L.; Simal-Gándara, J. A Review of Synthetic Polymer Characterization by Pyrolysis–GC–MS. Chroma 2009, 70 (3), 339–348. https://doi.org/10.1365/s10337-009-1254-1.
(170) Ishimura, T.; Iwai, I.; Matsui, K.; Mattonai, M.; Watanabe, A.; Robberson, W.; Cook, A.-M.; Allen, H. L.; Pipkin, W.; Teramae, N.; Ohtani, H.; Watanabe, C. Qualitative and Quantitative Analysis of Mixtures of Microplastics in the Presence of Calcium Carbonate by Pyrolysis-GC/MS. Journal of Analytical and Applied Pyrolysis 2021, 157, 105188. https://doi.org/10.1016/j.jaap.2021.105188.
(171) Tsuge, S.; Ohtani, H.; Watanabe, C. Pyrolysis - GC/MS Data Book of Synthetic Polymers: Pyrograms, Thermograms and MS of Pyrolyzates; Elsevier, 2011.
(172) Zhou, X.-X.; He, S.; Gao, Y.; Chi, H.-Y.; Wang, D.-J.; Li, Z.-C.; Yan, B. Quantitative Analysis of Polystyrene and Poly(Methyl Methacrylate) Nanoplastics in Tissues of Aquatic Animals. Environ. Sci. Technol. 2021, 55 (5), 3032–3040. https://doi.org/10.1021/acs.est.0c08374.
(173) Zhou, X.-X.; He, S.; Gao, Y.; Li, Z.-C.; Chi, H.-Y.; Li, C.-J.; Wang, D.-J.; Yan, B. Protein Corona-Mediated Extraction for Quantitative Analysis of Nanoplastics in Environmental Waters by Pyrolysis Gas Chromatography/Mass Spectrometry. Anal. Chem. 2021, 93 (17), 6698–6705. https://doi.org/10.1021/acs.analchem.1c00156.
(174) Matsui, K.; Ishimura, T.; Mattonai, M.; Iwai, I.; Watanabe, A.; Teramae, N.; Ohtani, H.; Watanabe, C. Identification Algorithm for Polymer Mixtures Based on Py-GC/MS and Its Application for Microplastic Analysis in Environmental Samples. Journal of Analytical and Applied Pyrolysis 2020, 149, 104834. https://doi.org/10.1016/j.jaap.2020.104834.
(175) Alpert, A. J. Hydrophilic-Interaction Chromatography for the Separation of Peptides, Nucleic Acids and Other Polar Compounds. Journal of Chromatography A 1990, 499, 177–196. https://doi.org/10.1016/S0021-9673(00)96972-3.
(176) Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-Independent MS/MS Deconvolution for Comprehensive Metabolome Analysis. Nat Methods 2015, 12 (6), 523–526. https://doi.org/10.1038/nmeth.3393.
(177) Horai, H.; Arita, M.; Kanaya, S.; Nihei, Y.; Ikeda, T.; Suwa, K.; Ojima, Y.; Tanaka, K.; Tanaka, S.; Aoshima, K.; Oda, Y.; Kakazu, Y.; Kusano, M.; Tohge, T.; Matsuda, F.; Sawada, Y.; Hirai, M. Y.; Nakanishi, H.; Ikeda, K.; Akimoto, N.; Maoka, T.; Takahashi, H.; Ara, T.; Sakurai, N.; Suzuki, H.; Shibata, D.; Neumann, S.; Iida, T.; Tanaka, K.; Funatsu, K.; Matsuura, F.; Soga, T.; Taguchi, R.; Saito, K.; Nishioka, T. MassBank: A Public Repository for Sharing Mass Spectral Data for Life Sciences. J Mass Spectrom 2010, 45 (7), 703–714. https://doi.org/10.1002/jms.1777.
(178) Fox Ramos, A. E.; Le Pogam, P.; Fox Alcover, C.; Otogo N’Nang, E.; Cauchie, G.; Hazni, H.; Awang, K.; Bréard, D.; Echavarren, A. M.; Frédérich, M.; Gaslonde, T.; Girardot, M.; Grougnet, R.; Kirillova, M. S.; Kritsanida, M.; Lémus, C.; Le Ray, A.-M.; Lewin, G.; Litaudon, M.; Mambu, L.; Michel, S.; Miloserdov, F. M.; Muratore, M. E.; Richomme-Peniguel, P.; Roussi, F.; Evanno, L.; Poupon, E.; Champy, P.; Beniddir, M. A. Collected Mass Spectrometry Data on Monoterpene Indole Alkaloids from Natural Product Chemistry Research. Sci Data 2019, 6 (1), 15. https://doi.org/10.1038/s41597-019-0028-3.
(179) Wang, M.; Carver, J. J.; Phelan, V. V.; Sanchez, L. M.; Garg, N.; Peng, Y.; Nguyen, D. D.; Watrous, J.; Kapono, C. A.; Luzzatto-Knaan, T.; Porto, C.; Bouslimani, A.; Melnik, A. V.; Meehan, M. J.; Liu, W.-T.; Crüsemann, M.; Boudreau, P. D.; Esquenazi, E.; Sandoval-Calderón, M.; Kersten, R. D.; Pace, L. A.; Quinn, R. A.; Duncan, K. R.; Hsu, C.-C.; Floros, D. J.; Gavilan, R. G.; Kleigrewe, K.; Northen, T.; Dutton, R. J.; Parrot, D.; Carlson, E. E.; Aigle, B.; Michelsen, C. F.; Jelsbak, L.; Sohlenkamp, C.; Pevzner, P.; Edlund, A.; McLean, J.; Piel, J.; Murphy, B. T.; Gerwick, L.; Liaw, C.-C.; Yang, Y.-L.; Humpf, H.-U.; Maansson, M.; Keyzers, R. A.; Sims, A. C.; Johnson, A. R.; Sidebottom, A. M.; Sedio, B. E.; Klitgaard, A.; Larson, C. B.; Boya P, C. A.; Torres-Mendoza, D.; Gonzalez, D. J.; Silva, D. B.; Marques, L. M.; Demarque, D. P.; Pociute, E.; O’Neill, E. C.; Briand, E.; Helfrich, E. J. N.; Granatosky, E. A.; Glukhov, E.; Ryffel, F.; Houson, H.; Mohimani, H.; Kharbush, J. J.; Zeng, Y.; Vorholt, J. A.; Kurita, K. L.; Charusanti, P.; McPhail, K. L.; Nielsen, K. F.; Vuong, L.; Elfeki, M.; Traxler, M. F.; Engene, N.; Koyama, N.; Vining, O. B.; Baric, R.; Silva, R. R.; Mascuch, S. J.; Tomasi, S.; Jenkins, S.; Macherla, V.; Hoffman, T.; Agarwal, V.; Williams, P. G.; Dai, J.; Neupane, R.; Gurr, J.; Rodríguez, A. M. C.; Lamsa, A.; Zhang, C.; Dorrestein, K.; Duggan, B. M.; Almaliti, J.; Allard, P.-M.; Phapale, P.; Nothias, L.-F.; Alexandrov, T.; Litaudon, M.; Wolfender, J.-L.; Kyle, J. E.; Metz, T. O.; Peryea, T.; Nguyen, D.-T.; VanLeer, D.; Shinn, P.; Jadhav, A.; Müller, R.; Waters, K. M.; Shi, W.; Liu, X.; Zhang, L.; Knight, R.; Jensen, P. R.; Palsson, B. Ø.; Pogliano, K.; Linington, R. G.; Gutiérrez, M.; Lopes, N. P.; Gerwick, W. H.; Moore, B. S.; Dorrestein, P. C.; Bandeira, N. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nat Biotechnol 2016, 34 (8), 828–837. https://doi.org/10.1038/nbt.3597.
(180) MassBank of North America. https://mona.fiehnlab.ucdavis.edu/ (accessed 2024-06-11).
(181) Bang, D. Y.; Lim, S.; Moon, M. H. Effect of Ionization Modifiers on the Simultaneous Analysis of All Classes of Phospholipids by Nanoflow Liquid Chromatography/Tandem Mass Spectrometry in Negative Ion Mode. Journal of Chromatography A 2012, 1240, 69–76. https://doi.org/10.1016/j.chroma.2012.03.073.
(182) HMDB 4.0: the human metabolome database for 2018 | Nucleic Acids Research | Oxford Academic. https://academic.oup.com/nar/article/46/D1/D608/4616873 (accessed 2024-06-11).
(183) mzCloud – Advanced Mass Spectral Database. https://www.mzcloud.org/ (accessed 2024-06-11).
(184) Zhu, L.; Zhao, S.; Bittar, T. B.; Stubbins, A.; Li, D. Photochemical Dissolution of Buoyant Microplastics to Dissolved Organic Carbon: Rates and Microbial Impacts. Journal of Hazardous Materials 2020, 383, 121065. https://doi.org/10.1016/j.jhazmat.2019.121065.
(185) Barnes, P. W.; Robson, T. M.; Neale, P. J.; Williamson, C. E.; Zepp, R. G.; Madronich, S.; Wilson, S. R.; Andrady, A. L.; Heikkilä, A. M.; Bernhard, G. H.; Bais, A. F.; Neale, R. E.; Bornman, J. F.; Jansen, M. A. K.; Klekociuk, A. R.; Martinez-Abaigar, J.; Robinson, S. A.; Wang, Q.-W.; Banaszak, A. T.; Häder, D.-P.; Hylander, S.; Rose, K. C.; Wängberg, S.-Å.; Foereid, B.; Hou, W.-C.; Ossola, R.; Paul, N. D.; Ukpebor, J. E.; Andersen, M. P. S.; Longstreth, J.; Schikowski, T.; Solomon, K. R.; Sulzberger, B.; Bruckman, L. S.; Pandey, K. K.; White, C. C.; Zhu, L.; Zhu, M.; Aucamp, P. J.; Liley, J. B.; McKenzie, R. L.; Berwick, M.; Byrne, S. N.; Hollestein, L. M.; Lucas, R. M.; Olsen, C. M.; Rhodes, L. E.; Yazar, S.; Young, A. R. Environmental Effects of Stratospheric Ozone Depletion, UV Radiation, and Interactions with Climate Change: UNEP Environmental Effects Assessment Panel, Update 2021. Photochem Photobiol Sci 2022, 21 (3), 275–301. https://doi.org/10.1007/s43630-022-00176-5.
(186) Barnes, P. W.; Robson, T. M.; Zepp, R. G.; Bornman, J. F.; Jansen, M. A. K.; Ossola, R.; Wang, Q.-W.; Robinson, S. A.; Foereid, B.; Klekociuk, A. R.; Martinez-Abaigar, J.; Hou, W.-C.; Mackenzie, R.; Paul, N. D. Interactive Effects of Changes in UV Radiation and Climate on Terrestrial Ecosystems, Biogeochemical Cycles, and Feedbacks to the Climate System. Photochem Photobiol Sci 2023, 22 (5), 1049–1091. https://doi.org/10.1007/s43630-023-00376-7.
(187) Balakrishnan, G.; Lagarde, F.; Chassenieux, C.; Martel, A.; Deniau, E.; Nicolai, T. Fate of Polystyrene and Polyethylene Nanoplastics Exposed to UV in Water. Environ. Sci.: Nano 2023, 10 (9), 2448–2458. https://doi.org/10.1039/D3EN00150D.
(188) Pfohl, P.; Wagner, M.; Meyer, L.; Domercq, P.; Praetorius, A.; Hüffer, T.; Hofmann, T.; Wohlleben, W. Environmental Degradation of Microplastics: How to Measure Fragmentation Rates to Secondary Micro- and Nanoplastic Fragments and Dissociation into Dissolved Organics. Environ. Sci. Technol. 2022, 56 (16), 11323–11334. https://doi.org/10.1021/acs.est.2c01228.
(189) Ghanadi, M.; Padhye, L. P. Revealing the Long-Term Impact of Photodegradation and Fragmentation on HDPE in the Marine Environment: Origins of Microplastics and Dissolved Organics. Journal of Hazardous Materials 2024, 465, 133509. https://doi.org/10.1016/j.jhazmat.2024.133509.
(190) Kovinchuk, I.; Haiuk, N.; Lazzara, G.; Cavallaro, G.; Sokolsky, G. Enhanced Photocatalytic Degradation of PE Film by Anatase/γ-MnO2. Polymer Degradation and Stability 2023, 210, 110295. https://doi.org/10.1016/j.polymdegradstab.2023.110295.
(191) Lestari, P.; Trihadiningrum, Y.; Warmadewanthi, I. Simulated Degradation of Low-Density Polyethylene and Polypropylene Due to Ultraviolet Radiation and Water Velocity in the Aquatic Environment. Journal of Environmental Chemical Engineering 2022, 10 (3), 107553. https://doi.org/10.1016/j.jece.2022.107553.
(192) Miller, D. C.; Carloni, J. D.; Johnson, D. K.; Pankow, J. W.; Gjersing, E. L.; To, B.; Packard, C. E.; Kennedy, C. E.; Kurtz, S. R. An Investigation of the Changes in Poly(Methyl Methacrylate) Specimens after Exposure to Ultra-Violet Light, Heat, and Humidity. Solar Energy Materials and Solar Cells 2013, 111, 165–180. https://doi.org/10.1016/j.solmat.2012.05.043.
(193) Grzybowski, W. Effect of Short-Term Sunlight Irradiation on Absorbance Spectra of Chromophoric Organic Matter Dissolved in Coastal and Riverine Water. Chemosphere 2000, 40 (12), 1313–1318. https://doi.org/10.1016/S0045-6535(99)00266-0.
(194) Chen, M.; Liu, S.; Bi, M.; Yang, X.; Deng, R.; Chen, Y. Aging Behavior of Microplastics Affected DOM in Riparian Sediments: From the Characteristics to Bioavailability. Journal of Hazardous Materials 2022, 431, 128522. https://doi.org/10.1016/j.jhazmat.2022.128522.
(195) Chen, W.; Westerhoff, P.; Leenheer, J. A.; Booksh, K. Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environ. Sci. Technol. 2003, 37 (24), 5701–5710. https://doi.org/10.1021/es034354c.
(196) Navalon, S.; Alvaro, M.; Garcia, H. Analysis of Organic Compounds in an Urban Wastewater Treatment Plant Effluent. Environmental Technology 2011, 32 (3), 295–306. https://doi.org/10.1080/09593330.2010.497501.
(197) Huang, M.; Li, Y.; Gu, G. Chemical Composition of Organic Matters in Domestic Wastewater. Desalination 2010, 262 (1), 36–42. https://doi.org/10.1016/j.desal.2010.05.037.
校內:2029-09-02公開