簡易檢索 / 詳目顯示

研究生: 王義盛
Wang, Yi-Sheng
論文名稱: 新穎微波介電材料的研究與應用
Research and Applications of Novel Microwave Dielectric Materials
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 108
中文關鍵詞: 微波介電材料陶瓷介電新穎濾波器帶通平行耦合
外文關鍵詞: microwave, dielectric, material, ceramic, filter, bandpass, wolframite, zircon
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要研究方向可分成兩大部份,第一個部份主要致力於發展新穎的微波介電材料,目標為合成出目前學界與業界都尚未應用的微波介電材料,並從微結構、物理特性與製程條件的差異下,探討這些條件對微波介電特性所造成的差異。第二部份則為介紹被動元件的應用,並與前段所介紹的介電材料做結合,並於其實作中探討介電特性與被動元件尺寸的相互關係。

      第一部份要介紹兩組微波介電材料,分別為MgSnNb2O8與Mg2YVO6。MgSnNb2O8為Wolframite結構,單斜晶系,空間群以P2/c(13)方式對稱;在1430℃燒結溫度下,持溫燒結6小時,可得到最佳的微波介電特性:εr ~ 22.05、Q×f ~ 17,100 GHz (at 6.857GHz)及τf ~ –54.6 ppm/℃。Mg2YVO6為Zircon結構,四方晶系,空間群為I41/amd (141)方式對稱;在燒結溫度為1290℃,持溫燒結4個小時,可得到最佳的微波介電特性:εr ~ 10.88、Q×f ~ 68,300 GHz (at 10.249 GHz)及τf ~ –53.9 ppm/℃。

      第二部份則設計與實作一組操作於2.45 GHz的微帶線帶通濾波器,主體為一U型諧振器,利用兩個T型諧振器饋入,並透過平行耦合的方式產生帶通的效果。T型諧振器其中一端可設計成一Open Stub來達到抑制倍頻寄生響應。最後,將此電路設計實作於FR4、氧化鋁和Mg2YVO6三種基版上,並量測其頻率響應。由量測結果可以得知,以高介電係數與低介電損耗的材料為電路基板時,確實可以達到縮小面積與提昇效能的需求。

    There are two main subjects in this thesis. First, we have synthesized two novel microwave dielectric materials which have not been developed and applied in academic and industrial fields yet. We also discuss the dielectric and microwave differences caused by morphology, physical properties and process conditions. Second, there will be a discussion of passive components and improvement of circuit size in different substrates.

    First part is the introduction of two novel microwave dielectric materials, MgSnNb2O8 and Mg2YVO6. MgSnNb2O8 has Wolframite structure belonged to monoclinic lattice system and the space group is P2/c(13). MgSnNb2O8 has the best microwave dielectric propertiesεr ~ 22.05、Q×f ~ 17,100 GHz (at 6.857GHz)、τf ~ –54.6 ppm/℃ while sintering at 1430℃ for 6 hours. Mg2YVO6 has Zircon structure belonged to tetragonal lattice system and space group is I41/amd (141). Mg2YVO6 has the best microwave dielectric properties εr ~ 10.88、Q×f ~ 68,300 GHz (at 10.249 GHz)、τf ~ –53.9 ppm/℃ while sintering at 1290℃ for 4 hours.

    Second part is the designation and fabrication of a microstrip band-pass filter and the first band is controlled at 2.45 GHz. This filter is constructed by two T-shaped resonators and a U-shaped hair-pinned resonator centered at middle. The U-shaped microstrip is parallel coupled by two T-shaped microstrips. The open stub side on T-shaped is designed to suppress the spurious response at second band. At last, the pattern was printed on FR4, Al2O3 and Mg2YVO6–1290℃–4hrs substrates. By comparing the frequency of measured results, we can observe the improvement of performance and size reduction by applying high dielectric constant and loss dielectric loss substrates.

    摘要 Ⅰ Abstract Ⅲ 目錄 Ⅴ 圖目錄 Ⅸ 表目錄 ⅩⅢ 第一章 緒論 1 1-1 前言 1 1-2 研究目的 1 第二章 介電材料原理 3 2-1陶瓷材料的燒結原理 3 2-1-1材料燒結之擴散方式 3 2-1-2材料燒結之過程 4 2-1-3燒結種類(固相、液相) 5 2-2介電材料之微波特性 7 2-2-1微波介電材料的特性分析 7 2-2-2介電係數(Dielectric constant:K、εr) 8 2-2-3品質因數(Quality factor:Q) 12 2-2-4共振頻率溫度飄移係數(Temperature Coefficient of Resonant Frequency:τf) 14 2-3介電共振器(Dielectric resonator:DR)原理 15 第三章 微帶線及濾波器原理 20 3-1 濾波器原理 20 3-1-1濾波器的簡介 20 3-1-2濾波器之種類及其頻率響應 21 3-2 微帶線原理 24 3-2-1 微帶傳輸線的簡介 24 3-2-2 微帶線的傳輸模態 25 3-2-3 微帶線各項參數公式計算及考量 26 3-2-4 微帶線的不連續效應 28 3-2-5 微帶線的損失 35 3-3 微帶線諧振器種類 36 3-3-1 λ/4短路微帶線共振器 36 3-3-2 λ/2開路微帶線共振器 37 3-4 共振器間的耦合形式 39 3-4-1 電場耦合: 39 3-4-2 磁場耦合: 43 3-4-3 混和耦合: 47 3-5 四分之一波長的阻抗轉換器與open stub 49 3-6 T型共振器 51 3-7 T型共振器與U型共振器之平行耦合帶通濾波器 52 第四章 實驗程序與量測方法 58 4-1 微波介電材料的製備 58 4-1-1 粉末的製備與球磨 59 4-1-2 粉末的煆燒 59 4-1-3 加入黏劑、過篩 59 4-1-4 壓模成型、去黏劑及燒結 60 4-2 微波介電材料的量測與分析 61 4-2-1 密度測量 61 4-2-2 X-Ray分析 61 4-2-3 SEM分析 61 4-2-4 介電特性量測與分析 62 4-2-5 共振頻率溫度飄移係數之量測 68 4-3 濾波器的製作與量測 69 第五章 實驗結果與討論 71 5-1 MgSnNb2O8之微波介電特性 75 5-1-1 MgSnNb2O8之XRD相組成分析 75 5-1-2 MgSnNb2O8之晶胞體積分析 77 5-1-3 MgSnNb2O8之SEM微結構分析 79 5-1-4 MgSnNb2O8之密度分析結果 81 5-1-5 MgSnNb2O8之介電常數分析結果 82 5-1-6 MgSnNb2O8之品質因素(Q¬×f)分析結果 83 5-1-7 MgSnNb2O8之共振頻率溫度飄移係數分析結果 84 5-2 Mg2YVO6之微波介電特性 85 5-2-1 Mg2YVO6之XRD相組成分析 85 5-2-2 Mg2YVO6之晶胞體積分析 87 5-2-3 Mg2YVO6之SEM微結構分析 89 5-2-4 Mg2YVO6之密度分析結果 91 5-2-5 Mg2YVO6之介電常數分析結果 92 5-2-6 Mg2YVO6之品質因素(Q¬×f)分析結果 93 5-2-7 Mg2YVO6之共振頻率溫度飄移係數分析結果 94 5-3 濾波器的模擬與實作 95 5-3-1 使用FR4(玻璃纖維基板)之模擬與實作結果 96 5-3-2 使用Al2O3之模擬與實作結果 98 5-3-3使用自製基板(Mg2YVO6)之模擬與實作結果 100 第六章 結論 104 參考文獻 105

    [1] H.T. Ogawa, A.K. Kan, S. Ishihara and Y. Higashida ,“Crystal structure of corundum type Mg4(Nb2-xTax)O9 microwave dielectric ceramics with low dielectric loss”, J. Eur. Ceram. Soc., 23 2485–2488 (2003).
    [2] A.K. Kan, H.T. Ogawa, A. Yokoi and Y. Nakamura ,“Crystal structural refinement of corundum-structured A4M2O9 (A = Co and Mg, M = Nb and Ta) microwave dielectric ceramics by high-temperature X-ray powder diffraction”, J. Eur. Ceram. Soc., 27 2977–2981 (2007).
    [3] W.F. Smith, 劉品均(譯), 施佑蓉(譯), 材料科學與工程, 第三版, 高立圖書, (2005).
    [4] J.W. Cahn and R.B. Heady, “Analysis of capillary forces in liquid-phase sintering of Jagged Particles,” J. Am. Ceram. Soc., 53 [7] 406–409 (1970).
    [5] W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, 陳皇鈞(譯), 陶瓷材料概論, 曉園出版社, (1988).
    [6] R.D. Richtmyer,“Dielectric resonators,” J. Appl. Phys., 10 391–398 (1939).
    [7] D.M. Pozar, “Microwave Engineering,” Third Edition, John Wiley & Sons, (2005).
    [8] D. Kajfez, A.W. Glisson, and J. James, “Computed Modal Field Distributions for Isolated Dielectric Resonators,” IEEE Trans. Microwave Theory Tech., 32 [12] 1609–1616(1984).
    [9] D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators,” Microwave System News., 13 152–161 (1983).
    [10] D. Kajfez and P. Guillon, Dielectric Resonators, Artech House (1989).
    [11] R.L. Geiger, P.E. Allen, N.R. Strader, “VLSI design techniques for analog and digital circuits,” McGraw-Hill, (1990).
    [12] J.S. Hong and M.J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, (2001).
    [13] G. Kompa, Practical Microstrip Design and Applications, Artech House, (2005).
    [14] 張盛富, 戴明鳳, 無線通信之射頻被動電路設計, 全華出版社, (1998).
    [15] K.C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, Second Edition, Artech House, (1996).
    [16] J.S. Hong and M.J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, (2001).
    [17] R.A. Pucel, D.J. Masse, and C.P. Hartwig, "Losses in microstrip," IEEE Trans. Microwave Theory Tech., vol.MTT-16, pp 342-350, June (1968).
    [18] G..L. Matthaei, L. Young, and E.M.T. Jones, “Microwave filters, impedance matching networks and coupling structures,” Artech House, (1980).
    [19] E.J. Denlinger, “Losses of microstrip lines,” IEEE Trans. Microwave Theory Tech., 28 [6] 513–522 (1980).
    [20] J.S. Hong and M.J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, (2001).
    [21] A. Hennings, E. Semouchkina, A. Baker, and G. Semouchkin, ”Design optimization and implementation of bandpass filters with normally fed microstrip resonators loaded by high-permittivity dielectric”, IEEE Trans. Microwave Theory Tech , Vol.54 , No.3 , 1253-1261, March (2006).
    [22] B.W. Hakki and P.D. Coleman, “A dielectric resonator method of measuring inductive capacities in the millimeter range,” IEEE Trans. Microwave Theory Tech., 8 [4] 402–410 (1960).
    [23] W.E. Courtney, “Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators,” IEEE Trans. Microwave Theory Tech., 18 [8] 476–485 (1970).
    [24] P. Wheless and D. Kajfez, “The use of higher resonant modes in measuring the dielectric constant of dielectric resonators,” IEEE Trans. Microwave Theory Tech., 85 [1] 473–476 (1985).
    [25] Y. Kobayashi and M. Katoh, “Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method,” IEEE Trans. Microwave Theory Tech., 33 [7] 586–592 (1985).
    [26] S.A. Naidu, S. Boudin, U.V. Varadaraju and B.Raveau “Host-sensitizede mission of LiInW2O8 wolframites : From red-Eu3+ to white-Dy3+ phosphors”, Journal of Solid State Chemistry 184 (2011) 2566–2570.
    [27] H.J. Van Daal, “The static dielectric constant of SnO2”, J. Appl. Phys. 39, 4467 (1968); doi: 10.1063/1.1656998.
    [28] E.S. Kim, B.S. Chun, R. Freer and R.J. Cernik, “Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics”, Journal of the European Ceramic Society 30 (2010) 1731–1736.
    [29] J.Y. Chen, W.H. Hsu and C.L. Huang “Dielectric properties of magnesium oxide at microwave frequency”, Journal of Alloys and Compounds 504 (2010) 284–287.
    [30] D.W. Kim, J.H. Kim, J.R. Kim, and K.S. Hong, “Phase constitutions and microwave dielectric properties of Zn3Nb2O8-TiO2”, Jpn. J. Appl. Phys.,Part1-Regular Papers Short Notes & Review Papers 40: 5994 (2001).
    [31] M.R. Varma, C.P. Reshmi and P.N. Lekshmi “Sinterability and dielectric properties of ZnNb2O6 – glass ceramic composites”, Advances in Ceramics - Synthesis and Characterization, ISBN: 978-953-307-505-1.
    [32] H.J. Lee, I.T. Kim, and K.S. Hong, “Dielectric properties of AB2O6 compounds at microwave frequencies (A=Ca, Mg, Mn, Co, Ni, Zn, and B=Nb, Ta)”, Jpn. J. Appl. Phys, Part 2-Letters 36 : L1318 (1997).
    [33] A. Kan, H. Ogawa, A. Yokoi, and Y. Nakamura, “Crystal structural refinement of corundum-structured A4M2O9 (A=Co and Mg, M=Nb and Ta) microwave dielectric ceramics by high-temperature x-ray powder diffraction”, J. Eur. Ceram. Soc. 27 : 2977 DOI 10.1016/j.jeurceramisoc.(2006).11.064 (2007).
    [34] R.D. Shannon “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides”, Acta Cryst. A32 751 (1976).
    [35] R. Umemur., H. Ogawa, H. Ohsato, A. Kan and A. Yokoi, “Microwave dielectric properties of low-temperature sintered Mg3(VO4)2 ceramic”, J. Eur. Ceram. Soc., (2005), 25, 2865–2870.
    [36] M.R. Joung, J.S. Kim, M.E. Song & S. Nahm, “Formation and microwave dielectric properties of the Mg2V2O7 ceramics”, J. Am. Ceram. Soc., 92 [7] 1621–1624 (2009).
    [37] L. Shamla, S.S. Kumar, K.V.O. Nair and J. James, “Synthesis and characterazation of novel ceramic vanadates”, 58th Annual Technical Meeting of the Indian Institute of Metals, Nov. 17-19, (2004).
    [38] H.Y. Pan “Analysis of a square ring resonator used for bandpass filter design with multispurious suppression”, Microwave and Optical Technology Letters vol. 54 No. 4 (2012).

    無法下載圖示 校內:2018-07-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE