簡易檢索 / 詳目顯示

研究生: 蘇映先
Su, Yin-Hsien
論文名稱: 以共電鍍方式製備銅銦鎵硒薄膜及其電化學特性之研究
A Study on Electrochemical Characteristics and Co-electrodeposition of Cu(In,Ga)Se2
指導教授: 李文熙
Lee, Wen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 109
中文關鍵詞: 銅銦鎵硒循環伏安法共電鍍電化學分析
外文關鍵詞: Cu(In,Ga)Se2, cyclic voltammetry, Co-electrodeposition, electrochemical study
相關次數: 點閱:94下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用電鍍製程在室溫下製備Cu(In,Ga)Se2薄膜,主要目的為提供Cu-In-Ga-Se四元電化學系統的基礎特性分析,並藉由共電鍍的方式沉積出接近理想化學組成之Cu(In,Ga)Se2薄膜。
    本實驗由電化學特性分析開始,在傳統的三電極電鍍槽當中,於鉬基板(Mo substrate)上針對含有Cu、In、Ga、Se等四種離子的溶液,從單元素至四元素的溶液系統進行循環伏安法分析,並輔以SEM、EDS、XRD等薄膜分析來判斷各種離子在溶液當中的反應機制。為了建立較完整的電化學資料庫與比較不同基板造成的反應機制差異,我們也進行了使用銅做為基板的電化學分析實驗。實驗結果發現Ga於Cu或Se存在時,有明顯的欠電位沉積效應,透過此種效應,不必施以符合Ga元素還原電位的電壓也可以得到含Ga的Cu(In,Ga)Se2薄膜。接著我們為了確認共電鍍Cu-In-Ga-Se溶液之可行性,將共電鍍所得之初鍍膜與共電鍍的CuInSe2薄膜做比較,利用EDS、XRD等分析來確認其為四元黃銅礦結構化合物Cu(In,Ga)Se2。最後我們討論了各種製程參數對共電鍍Cu(In,Ga)Se2之影響,諸如溶液中In、Ga離子之濃度、電鍍時間、熱退火處理、以及加入檸檬酸鈉(Na-citrate)為錯合劑等等因素。實驗的結果藉由SEM、EDS、XRD、Raman spectroscopy等分析方法,幫助我們分析觀察Cu(In,Ga)Se2薄膜之晶體結構、表面形貌、化學組成等變化,並探討Cu(In,Ga)Se2薄膜產生變化的原因。實驗結果顯示,加入適量的檸檬酸鈉錯合劑可以提升薄膜中的[In]+[Ga]比例。而含有高Ga3+濃度溶液所製備的薄膜經過熱處理後Ga含量有明顯的上升,其原因可能為Cu(In,Ga)Se2薄膜底部的Ga元素擴散所致。

    This thesis focus on the co-electrodeposition of stoichimetric Cu(In,Ga)Se2 thin films, and the electrochemical study of the Cu-In-Ga-Se system has been presented. Cyclic voltammegram was adopted to help clarify the electrochemical characteristics of acid solution containing Cu2+, In3+, Ga3+ and H2SeO3 on Mo substrate. Electrochemical behavior from unitary Cu, In, Ga and Se system to quaternary Cu-In-Ga-Se system were fully investigated, and the insertion of Ga into the solid phase was found to be carried out through an induced co-deposition mechanism. For better insight of the mechanism, a cyclic voltammetric study were also performed on Cu substrates. Based on this mechanism, Cu(In,Ga)Se2 thin films were able to be formed on Mo substrate by co-electrodeposition. XRD was used to identify the as-deposited film as the quaternary chalcopyrite compound while composition and morphology were characterized by EDS and SEM, respectively. In order to achieve a higher level of gallium insertion, influence of solution concentration, deposition time, complexing agent and annealing was examined. Results show that the use of complexing agent allowed an stable increase in [In]+[Ga] content by limiting Cu-Se compound formation. Changing in Ga3+ concentration seems no immediate effect on Ga insertion, yet an increasing gallium atomic percentage from 1. 9% to 3.7% was obtained from the annealed Cu(In,Ga)Se2 film with higher Ga3+ concentration, indicating the diffusion of Ga from the underlying Ga-rich Cu(In,Ga)Se2 film after annealing.

    第一章 緒論 1 1-1. 前言 1 1-2. 太陽能電池介紹 1 1-3. Cu(In,Ga)Se2薄膜太陽能電池之發展與演進 5 1-4. Cu(In,Ga)Se2薄膜之主要製程 5 1-5. 電鍍製備Cu(In,Ga)Se2之製程現況 8 1-6. 實驗動機與目的 10 第二章 原理與文獻回顧 11 2-1. 太陽電池工作原理 11 2-2. Cu(In,Ga)Se2四元化合物之材料特性 16 2-3. 電鍍製程原理 19 2-3-1. 電化學沉積過程 19 2-3-2. 法拉第定律與電流效率 20 2-3-3. 基本電鍍系統的組成 21 2-3-4. 電鍍薄膜的成長機制 24 2-4. 影響電鍍製程之因素 27 2-5. 循環伏安法與氧化還原電位 28 2-6. 錯合劑(Complexing agent) 30 2-7. 共電鍍Cu(In,Ga)Se2薄膜 31 第三章 實驗方法與步驟 33 3-1. 實驗材料 33 3-2. 實驗設備 33 3-2-1. 恆電位儀 33 3-2-2. 薄膜濺鍍系統(Sputtering System) 35 3-2-3. 磁石攪拌平台 36 3-2-4. 快速退火爐(Rapid Thermal Annealing) 36 3-2-5. 高溫爐(Furnace) 38 3-3. 實驗流程 39 3-3-1. Mo基板製作 39 3-3-2. 溶液的配製 40 3-3-3. 電化學分析 41 3-3-4. 共電鍍Cu(In,Ga)Se2薄膜 42 3-3-5. 電鍍參數調變 43 3-3-6. 熱退火處理 43 3-4. 鍍層分析儀器 43 3-4-1. 四點探針(Four point probe) 43 3-4-2. 掃描式電子顯微鏡(Scanning Electron Microscope) 44 3-4-3. 能量分散光譜儀(Energy Dispersive Spectroscopy) 45 3-4-4. X-Ray粉末繞射儀(Powder X-ray Diffraction) 46 3-4-5. 拉曼光譜儀(Raman Spectroscopy) 47 第四章 結果與討論 49 4-1. Cu-In-Ga-Se子系統之電化學特性探討 49 4-1-1. 二甲基甲醯胺溶劑之電化學特性探討 49 4-1-2. Ga溶液對Mo基板之電化學特性探討 50 4-1-3. Cu-Ga溶液對Mo基板之電化學特性探討 53 4-1-4. Ga-Se溶液對Mo基板之電化學特性探討 55 4-1-5. Ga溶液對Cu基板之電化學特性探討 58 4-1-6. Cu-Ga溶液對Cu基板之電化學特性探討 61 4-1-7. Ga-Se溶液對Cu基板之電化學特性探討 63 4-1-8. Cu-Ga-Se溶液對Mo基板之電化學特性探討 67 4-2. Cu-In-Ga-Se四元系統之電化學特性探討與共電鍍CIGS薄膜分析 69 4-2-1. Cu-In-Ga-Se溶液之循環伏安法分析 69 4-2-2. CIS與CIGS初鍍膜之SEM表面結構分析與EDS成分分析 71 4-2-3. CIS與CIGS初鍍膜之XRD繞射分析 76 4-2-4. 熱退火CIS與CIGS薄膜之XRD繞射分析 77 4-3. 各項實驗變因對共電鍍CIGS薄膜的影響 79 4-3-1. 改變Ga離子濃度對共電鍍CIGS薄膜的影響 80 4-3-2. 改變In離子濃度對共電鍍CIGS薄膜的影響 83 4-3-3. 改變電鍍時間對共電鍍CIGS薄膜的影響 87 4-3-4. 熱退火處理對共電鍍CIGS薄膜的影響 94 4-3-5. 添加檸檬酸鈉錯合劑對共電鍍CIGS薄膜的影響 97 第五章 結論 105 參考資料 106

    1. 莊家琛, 太陽能工程-太陽電池篇, p.7-2至p.7-3., 全華科技圖書, 2006.
    2. Jeffery L. Gray, Handbook of photovoltaic since and Engineering, A Luque and S. Hegedus, John Wiley &Sons, chap. 3, 2003.
    3. http://www.kson.com.tw/chinese/study_23-6.htm
    4. Karsten Otte, Liudmila Makhova, Alexander Braun, IgorKonovalov, Thin Solid Films, 511-512: p. 613-622, 2006.
    5. G.M. Hanket, U.P.S., E. Eser, W. N.ShaFaran, R. W. Birkmire, Photovoltaic Specialists Conference. Proceedings of the 29th IEEE, 567, 2002.
    6. Mitchell, K.W., et al., CuInSe2 cells and modules, IEEE transaction on electron devices, 37, 410-417, 1990.
    7. Dimmler, B., M. Powalla, and H.W. Schock, CIS-based thin film photovoltaic modules: Potential and prospects. Prog. Photovoltaic: Res. Appl., 10, 149-157, 2002
    8. Chu, N. and D. Honeyman, Solar cells, 31, 197, 1991.
    9. 新能源材料 p.38, 陳軍, 袁堂華, 五南, 2008.
    10. R. A. Mickelsen, Wen S. Chen, Y Roger Hsiao, Virginia E. Lowe, IEEE Trans, Electron Device, vol. ED-31, p. 542, 1984.
    11. R. A. Mickelsen, Wen S. Chen, Material Research Society, p.39-47, 1987.
    12. Andrew M. Gabor, John R. Tuttle, David S. Albin, Miguel A.Contreras, Rommel Noufi, Allen M. Hermann, Appl. Phys. Lett., vol. 65, p. 198, 1994.
    13. J. AbuShama, R. Noufi, and S. Johnston, DOE Solar Energy Technologies Program Review Meeting, 2004.
    14. R. A. Mickelsen, Wen S. Chen, Appl. Phys. Lett., vol. 36, No. 5, pp. 371-373, 1980.
    15. S. P. Grindle, A. H. Clark, S. Rezaie-Serej, J. Mcneily, L. L.Mcneily, Journal of Applied Physics, 51:p. 10, 1980.
    16. B. Pamplin, R.S. Feigelson, Thin Solid Films, vol. 60, pp. 144, 1979.
    17. N. Romeo, V. Canevari, G. Sberveglieri, A. Bosio, L. Zanotti, Solar Cells, vol. 16, pp. 155-164, 1986.
    18. D. Pottier and G. Maurin, J. Appl. Electrochem., 19:p.361, 1989.
    19. Raghu N. Bhattacharya, A.M.F., Solar Energy Materials & Solar Cells, 76: p. 331- 337, 2003.
    20. A . Kampmann, V. S. , J. Rechid, R . Reineke-Koch, Thin Solid Films, 361-362: p.309-313., 2000.
    21. D. Lincot, J.F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J.P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P.P. Grand, M. Benfarah, P. Mogensen, O. Kerrec, Solar Energy 77 (2004) 725–737
    22. R.N.Bhattacharya, J. Electrochem. Soc., vol. 130, p. 2041, 1983.
    23. Kapur, V.J., Basol, B.M., Tseng, E.S., 1987. Preparation of thin films of chalcopyrites for photovoltaics. In: Hwang, H.L., et al. (Eds.), Proceedings Seventh International Conf. Ternary and Multinary Compounds, pp. 219–224.
    24. Prosini, P.P., Addonizio, M.L., Antonaia, A., Loreti, S., Thin Solid Films 288, 90–94., 1996.
    25. Thouin, L., Rouquette-Sanchez, S., Vedel, J., Electrochim. Acta 38, 2387–2394, 1993.
    26. Bhattacharya, R.N., Wiesner, H., Berens, T.A., Matson, R.J., Keane, J., Ramanathan, K., Swartzlander, A., Mason, A., Noufi, R.N., J. Electrochem. Soc. 144, 1376–1379.
    27. Friedfeld, R., Raffaelle, R.P., Mantovani, J.G., Solar Energy Mater. Solar Cells 58, 375–385, 1999.
    28. Bhattacharya, R.N., Fernandez, A.M., Solar Energy Mater. Solar Cells 76, 331–337, 2003.
    29. M. Estela Calixto, Kevin D. Dobson,Brian E. McCandless, and Robert W. Birkmire Journal of The Electrochemical Society, 153 (6) G521-G528 (2006)
    30. L. Ribeaucourt, et al., Electrochemical study of one-step electrodeposition of copper–indium–gallium alloys in acidic conditions as precursor layers for Cu(In,Ga)Se2 thin film solar cells, Electrochim. Acta (2011), doi: 10.1016/j.electacta.2011.05.033
    31. 林明獻, 太陽電池入門技術, 2nd ed., 全華圖書股份有限公司, 2008.
    32. Adolf Goetzberger, Christopher Hebling, Photovoltaic materials, past, present, future, Solar Energy Materials & Solar Cells, 62, 1(2000)
    33. L. Kaupmees, M. Altosaar, O. Volubujeva, E. Mellikov, Thin Solid Films, 515,5891 (2007)
    34. R. Klenk, J. Klaer, R. Scheer, M.Ch. Lux-Steiner, I. Luck, N. Meyer, U. Rqhle, Thin Solid Films, 480–481, 509(2005)
    35. 邱秋燕,廖曰淳,楊慕震,黃渼雯,羅一玲,銅銦鎵硒太陽電池-非真空製程技術發展簡介,工業材料雜誌,264, (2008)
    36. J. S. Park, Z. Dong, Sungtae Kim, and J. H. Perepezko, Journal of Applied Physics, 87, 3683 (2000)
    37. N.B. Chaure, A.P. Samantilleke, R.P. Burton, J. Young and I.M. Dharmadasa, Thin Solid Films , 472, 212 (2005)
    38. M. Bar, W. Bohne, J. Rohrich, E. Strub, S. Linder, M. C. Lux-Steiner, and Ch.-H.Fischer, T.P.Niesen, F.Karg, J. Appl. Phys., 7, 3858 (2004)
    39. Marudachalam et al. J. Appl. Phys., Vol. 82, No. 6, 15 September 1997.
    40. 胡啟章, 電化學原理與方法, 1st ed. (五南圖書出版, 台北, 2002)
    41. M. Paunovic, M. Schlesinger, Fundamentals of electrochemical deposition, 2nd ed. ( Wiley, New Jersey, 2006)
    42. 賴耿陽, 實用電鍍技術全集, 復漢出版社, 1981
    43. Ehl, Rosemary Gene; Ihde, Aaron (1954). Journal of Chemical Education 31 (May): 226–232
    44. Milan Paunovic, Mordechay Schlesinger, Fundamentals of Electrochemical Deposition, Electrochemical Society ,1998
    45. W. J. Lorenz, G. Staikov, Journal of Applied Electrochemistry, 28, 5: p. 564- 565, 1998.
    46. Orna, Mary Virginia; Stock, John (1989). Electrochemistry, past and present. Columbus, OH: American Chemical Society
    47. Bard, A. J., Parsons, R., and Jordan, J. (1985). Standard Potentials in Aqueous Solutions (Marcel Dekker, New York) Vanýsek, Petr (2007).
    48. “Electrochemical Series”, in Handbook of Chemistry and Physics: 88thEdition (Chemical Rubber Company).
    49. F. Chraibi, M. Fahoume, A. Ennaoui, J.L. Delplancke, Phys. Stat. Sol. 186 (2001) 373–381.
    50. Jun Liu, Fangyang Liu, Yanqing Lai, Zhian Zhang, Jie Li, Yexiang Liu, Journal of Electroanalytical Chemistry 651 (2011) 191–196
    51. T.J. Whang, M.T. Hsieh, Y.Ch. Kao, Sh.J. Lee, Appl. Surf. Sci. 255 (2009) 4600–4605.
    52. R. Ugarte, R. Schrebler, R. Cordova, E.A. Dalchiele, H. Gomez, Thin Solid Films 340 (1999) 117–124.
    53. M. Kemell, M. Ritala, H. Saloniemi, M. Leskela, T. Sajavaara, E. Rauhala, J. Electrochem. Soc. 147 (2000) 1080–1087.
    54. S. Beyhan, S. Suzer, F. Kadırgan, Sol. Energy Mater. Sol. Cells 91 (2007) 1922–1926.
    55. L. Thouin, S. Rouquette-Sanchez, and J. Vedel, 10th Europ. Photovoltaic Solar Energy Conf., Lisbon (Portugal), 1991 (p. 893).
    56. M. Steichen, et al., Thin Solid Films (2011), doi:10.1016/j.tsf.2011.01.135
    57. Yanqing Lai, Fangyang Liu, Zhian Zhang, Jun Liu, Yi Li, Sanshuang Kuang, Jie Li, Yexiang Liu, Electrochimica Acta 54 (2009) 3004–3010.
    58. Josiah Jebaraj J. Muthuraj,a Don H. Rasmussen,a,b and Ian I. Sunia Journal of The Electrochemical Society, 158 (2) D54-D56 (2011)
    59. M.P.R. Panicker, M. Knaster and F.A.Kroger. 1978 J.Electrochem.soc.125 p.566.
    60. D. Braunger, D. Hariskos, G. Bilger, U. Rau and H.W. Schock, Thin Solid Films, 361, 161(2000)
    61. O. Roussel, O. Ramdani, E. Chassaing, P.P. Grand, M. Lamirand, A. Etcheberry, O. Kerrec, J.F. Guillemoles, and D. Lincota, Journal of The Electrochemical Society, 155, D141 (2008)
    62. D.L.Simth, Chap10 Film Analysis, Thin Film Deposition, (McGraw-Hill, New York, USA, 1995)
    63. 汪建民,材料分析,1st ed.(中國材料科學學會,新竹,1998)
    64. 林麗娟, X光繞射原理及其運用, 工業材料, 86, 101(1994)
    65. Soon Hyung Kang, Yu-Kyung Kim, Don-Soo Choi, Yung-Eun Sung, Electrochimica Acta, 51, 4433 (2006)
    66. I. Dirnstorfer et al. Thin Solid Films 361-362 (2000) 400-405
    67. Xia Donglin , Li Jangzhuang, Xu Man, Zhao Xiujian, Journal of Non-Crystalline Solids, 354 (2008) 1447–1450

    下載圖示 校內:2016-09-06公開
    校外:2016-09-06公開
    QR CODE