簡易檢索 / 詳目顯示

研究生: 簡宸陽
Chien, Cheng-Yang
論文名稱: 泥漿體坍流試驗坍流過程之量測與分析
Measurement and Analysis of the Slump-Flow Process of Sediment Slurries in Slump-Flow Tests
指導教授: 詹錢登
Jan, Chyan-Deng
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 60
中文關鍵詞: 坍落度坍流度坍流過程坍落過程黏滯係數屈服應力
外文關鍵詞: slump, slump-flow, slump-flow process, slump process, viscosity, yield stress
相關次數: 點閱:85下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究進行泥漿體之坍流實驗,量測泥漿體坍流及坍落過程,並探討其坍流參數與流變參數之關聯性。坍流試驗使用平截圓錐坍度桶,其頂端直徑為5 cm、底端直徑為10 cm、高度為15 cm。本研究自行設計坍流試驗操作支架,用滑輪穩定坍度桶在實驗過程當中的垂直拉升,坍度桶中央設置一固定鐵柱以及沿鐵柱上下移動之圓盤,便於量測坍落過程之設施,在底板畫設標線便於量測坍流過程之設施,並使用高速攝影機拍攝坍落及坍流過程。藉由以上設備量測泥漿體之坍度參數(坍流度、坍落度、坍流時間、坍落時間)。流變實驗使用DV-III型水平旋轉式流變計,量測泥漿體之流變參數(屈服應力、黏滯係數)。實驗使用的泥砂為粉沙材料,用水混合別調配成為五種體積濃度之泥漿體,進行坍度實驗與流變實驗。
    實驗結果顯示:(1) 當試體之體積濃度較高,其坍流度及坍落度較小且坍流時間較短,而坍落時間則較長;(2) 坍落度與坍落時間呈線性負相關,而坍流度與坍流時間則呈線性正相關;(3) 五種不同體積濃度之試體的坍落時間皆大於坍流時間,此顯示坍流停止時坍落依然還在進行當中;(4)坍流度及坍流時間與屈服應力及黏滯係數皆呈指數型負相關,當試體具有較高屈服應力及黏滯係數,其坍流度較小且坍流時間較短;(5)坍落過程之曲線近似於S型,由結果可觀察到坍落過程之實驗曲線與理論曲線在坍落初期階段有差異,其原因可能為理論分析有過度簡化的情況所致。

    In this study, the slump-flow tests of the sediment slurries were carried out, the slump-flow process and slump process of the sediment slurries were measured and analyzed, and the correlation between the slump parameters and the rheological parameters was discussed. The slump cone in the shape of a truncated metal cone, open at both ends, is equipped with the set-ups. The internal diameter of the slump cone is 100 mm at the base, 50 mm diameter at the top, and has a height of 150 mm. This set-up comprises 1) an iron main frame to which a pulley system is adapted that allows a smooth lifting of the slump cone; 2) An axial vertical rod and an acrylic plate that could slide down the rod for measuring the slump process; 3) A non-absorbent bottom plate with marking line for measuring the slump-flow process; 4) Two highspeed camera to record the slump and slump-flow process. Using the above equipment to measure the slump parameters (slump-flow, slump, slump-flow process, slump process) of the sediment slurries. The rheometer used in the rheological experiment is the “DV-III horizontal rotary rheometer”, which is used to measure the rheological parameters (yield stress, viscosity) of the sediment slurries. The silt material used in the experiment is reservoir silt. It's mixed with water to form sediment slurries with five volume concentrations for slump experiments and rheology experiments.
    After the experiment, the results show that: (1) When the volume concentration of the sample is higher, the slump and slump are smaller, the slump time is shorter, and the slump time is longer; (2) Slump and slump time are linearly negatively correlated. Slump-flow and slump-flow time are linearly positively correlated; (3) The slump time is greater than the slump-flow time at each volume concentration. The slump is still in progress when the slump-flow stopped; (4) The slump flow and slump time are exponentially negatively correlated with the yield stress and viscosity. When the specimen has higher yield stress and viscosity, the slump flow is smaller and the slump time is shorter; (5) The curves of the slump process are similar to the S-shape. From the results, it can be observed that the experimental curve of the slump process and the theoretical curve are different in the early stage of the slump, which may be caused by the oversimplification of the theoretical analysis.

    摘要 I 誌謝 II Abstract III 目錄 IX 圖目錄 XI 表目錄 XIV 符號表 XV 第一章 前言 1 1.1 研究動機 1 1.2 研究目的 2 1.3 本文架構 2 第二章 文獻回顧 3 2.1 土石流流變特性 3 2.2 坍度實驗 4 第三章 理論分析 11 3.1 坍落過程 11 第四章 實驗配置與方法 15 4.1 流變實驗儀器與方法 15 4.1.1 實驗設備 15 4.1.2 流變計校正 18 4.1.3 實驗方 19 4.2 坍流實驗儀器與方法 20 4.2.1 坍流實驗設備 20 4.2.2 改良坍流實驗設備 21 4.2.3 改良裝置之影響 27 4.2.4 實驗方法 29 4.3 實驗材料 30 4.3.1 無因次化 32 第五章 實驗結果與分析 33 5.1 流變實驗結果 33 5.2 坍流實驗結果 36 5.2.1 坍流度 36 5.2.2 坍落度 37 5.2.3 坍落與坍流關係 43 5.2.4 坍流過程 44 5.2.5 坍落過程 44 5.3 坍度特性與流變特性之關聯性 48 5.3.1 屈服應力 48 5.3.2 黏滯係數 49 5.4 理論與實驗結果之比較 54 5.4.1 坍落過程 54 第六章 結論與建議 56 6.1 結論 56 6.2 建議 57 參考文獻 58

    1. 王志賢(2007),「泥砂顆粒組成對黏性土石流體流變參數影響之研究」,國立成功大學水利及海洋工程研究所博士論文。
    2. 張雅雯(2008),「固體顆粒和Carbopol 940漿體混合後支流變特性」,國立成功大學水利及海洋工程研究所碩士論文。
    3. 許喬凱(2016),「利用坍度試驗推估泥砂漿體的流變參數」,國立成功大學水利及海洋工程研究所碩士論文。
    4. 詹錢登(2000),「土石流概論」,科技圖書股份有限公司。
    5. 詹錢登、張雅雯、郭峰豪、羅偉誠,(2009),「固體顆粒對賓漢流體流變參數之影響」, Journal of Chinese Soil and Water Conservation,40(1), 95-104。
    6. 詹錢登、許喬凱、楊致遠,(2018),「高嶺土泥沙漿體流變與坍度之試驗研究」。 Journal of Chinese Soil and Water Conservation,49(2),110-116。
    7. 李丹、王志賢、詹錢登,(2021),「泥沙漿體屈服應力與坍落度及坍流度關係之研究」, Journal of Chinese Soil and Water Conservation,(已接收)。
    8. 胡小芳、苏志学(2006),「改进式坍落度筒法测定新拌混凝土流变性能」,混凝土,(8),64-69。
    9. 邓初首、夏勇(2006),「混凝土坍落度影响因素的试验研究」,混凝土, (1), 65-66。
    10. Bouvet, A., Ghorbel, E., & Bennacer, R. (2010). The mini-conical slump flow test: Analysis and numerical study. Cement and concrete research, 40(10), 1517-1523.
    11. Chidiac, S. E., Maadani, O., Razaqpur, A. G., & Mailvaganam, N. P. (2000). Controlling the quality of fresh concrete-a new approach. Magazine of Concrete Research, 52(5), 353-363.
    12. Cui, W., Tang, Q. W., & Song, H. F. (2021). Effects of Viscosity on Pumping Concrete Behavior Using Computational Fluid Dynamics Method. ACI Materials Journal, 118(2), 117-126.
    13. Dey, L., Jan, C. D., & Wang, J. S. (2021). Effects of particle fractions on the Bingham yield stress and viscosity of fine-coarse particle suspensions. Journal of Mountain Science, 18(11), 2960-2970.
    14. Ferraris, C. F., & de Larrard, F. (1998). Modified slump test to measure rheological parameters of fresh concrete. Cement, Concrete and Aggregates, 20(2), 241-247.
    15. Gao, J., & Fourie, A. (2015). Spread is better: An investigation of the mini-slump test. Minerals Engineering, 71, 120-132.
    16. Komura, R., Tanigawa, Y., Mori, H., Kurokawa, Y. (1994). Rheological study on slumping behavior of fresh concrete. Journal of Structural and Construc-tion Engineering, AIJ, No. 462, 1-10. (In Japanese).
    17. Kurokawa, Y., Tanigawa, Y., Mori, H., and Komura, R. (1994). A study on the slump test and slump-flow test of fresh concrete. Transactions of the Japan Concrete Institute, 16, 25-32.
    18. Laskar, A. I. (2009). Correlating slump, slump flow, vebe and flow tests to rheological parameters of high-performance concrete. Materials Research, 12(1), 75-81.
    19. Li, W., Guo, L., Liu, G., Pan, A., & Zhang, T. (2020). Analytical and experimental investigation of the relationship between spread and yield stress in the mini-cone test for cemented tailings backfill. Construction and Building Materials, 260, 119770.
    20. O’Brien, J. S., and Julien, P. Y. (1988). Laboratory analysis of mudflow properties. Journal of Hy-draulic Engineering, ASCE, 114(8), 877-887.
    21. Pashias, N., Boger, D. V., Summers, J., & Glenister, D. J. (1996). A fifty cent rheometer for yield stress measurement. Journal of Rheology, 40(6), 1179-1189.
    22. Pereira, J. B., & Maciel, G. F. (2021). Automated slump test: An effective alternative in predicting rheological properties and an efficient tool for providing the quality control of materials. Measurement, 178, 109384.
    23. Roussel, N., & Coussot, P. (2005). “Fifty-cent rheometer” for yield stress measurements: from slump to spreading flow. Journal of rheology, 49(3), 705-718.
    24. Tanigawa, Y., & Mori, H. (1989). Analytical study on deformation of fresh concrete. Journal of Engineering Mechanics, 115(3), 493-508.
    25. Tregger, N., Ferrara, L., & Shah, S. P. (2008). Identifying viscosity of cement paste from mini-slump-flow test. ACI Materials Journal, 105(6), 558.
    26. Tregger, N., Gregori, A., Ferrara, L., & Shah, S. (2012). Correlating dynamic segregation of self-consolidating concrete to the slump-flow test. Construction and Building materials, 28(1), 499-505.
    27. Wallevik, J. E. (2006). Relationship between the Bingham parameters and slump. Cement and concrete research, 36(7), 1214-1221.

    無法下載圖示 校內:2027-07-15公開
    校外:2027-07-15公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE