| 研究生: |
陳軍豪 Chen, Chun-Hao |
|---|---|
| 論文名稱: |
利用Hough轉換追蹤顆粒流體中顆粒運動之軌跡 Tracking Particles Moving Trajectories in Granular Flows by the Hough Transform Method |
| 指導教授: |
詹錢登
Jan, Chyan-Deng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | Hough轉換 、顆粒流 、運動軌跡 |
| 外文關鍵詞: | Hough Transform, granular flow, moving trajectory |
| 相關次數: | 點閱:73 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用圓形Hough轉換追蹤顆粒流影像及土石流影像中顆粒的移動特性。本文分析的影像包含直立式環筒顆粒流影像及現場土石流影像。
本文在直立式環筒顆粒流試驗中,使用聚苯乙烯顆粒(單一粒徑)及玻璃彈珠(混合粒徑)兩種球形顆粒。使用DV攝影機來拍攝顆粒在環筒中的運動過程,然後使用影像處理、Hough轉換及PTV技術追蹤顆粒在影像中的位置及運動軌跡。結果表明只要影像中顆粒的邊緣足夠清晰且影像中的顆粒粒徑大小需大於8個像素,即使顆粒的材質不同,本文所使用的方法都能有效追蹤顆粒的運動軌跡。圓形的Hough轉換除了可以得到顆粒在影像中的位置,也可求得顆粒的半徑大小,有利於分析混合粒徑顆粒流中顆粒大小及其運動特性。
本文運用影像處理、Hough轉換及PTV技術追蹤分析土石流影像中表面較大的礫石顆粒的運動特性。結果表明由於土石流中礫石顆粒並非圓形,雖然理論上不宜直接使用圓形Hough轉換,但可以求取內切圓或外切圓的方式進行追蹤分析。在應用於土石流的影像時,若將整張影像做Hough轉換,將得到許多不必要的點位資料,而本文尚未找到合適的資料篩選方式。若改對選取之ROI範圍(region of interest)影像中的顆粒定位,則有不錯的結果,由不同時間點的影像求得的顆粒位置,可來用來估算出土石流的表面顆粒的移動速度。
This paper presents a method of using circular Hough transform to identify the positions of particles in an image of granular flow or debris flow and then to track their moving trajectories. The images used in this paper includes the video image of granular flows in a vertically rotating annular flume experiments, and the video image of a debris flow.
The experiments of granular flows in a vertically rotating annular flume were conducted by using two types of spherical granular particles:polystyrene pellets (having uniform size) and glass marbles (having non-uniform size). The spherical particles moving in the rotating annular flume were recorded by a digital video camera. The positions of particles in the image were identified by the techniques of the digital image processing, the Hough transform and the particle tracking velocimetry (PTV). The result showed that as long as the particle size in the image is larger than eight pixels and the edge of particles in the image is clear, the proposed method can effectively track the moving particles for the two kinds of particle materials used in this study. The circular Hough transform not only can identify the position of particle but also can estimate the diameter of the particle, and this function would be very useful in analysis of the particle sizes and size distribution in the granular flows with non-uniform particle sizes.
The proposed method of particle tracking was also applied to analyze the movement of the large gravels on the surface of a debris flow. Theoretically, the circular Hough transform could not directly used to track the gravels in debris flows because gravels in the flows are not spherical in shape. Therefore, the non-circular shape technique of circular Hough transform was used track the gravels in debris flows. If taking the Hough transform on the entire image of a debris flow, it would get many unnecessary data, and the author had not found a suitable method to delete these unnecessary data yet. Therefore, the author take the Hough transform on the region of interest of the debris-flow image instead of the entire image in tracking the gravel movement in debris flow.
1. 陳金鐘, “球狀顆粒在直立式旋轉環筒內運動特性之初步研究,” 國立成功大學水利及海洋工程研究所碩士論文, 2000
2. 張守陽, 黃榮堂, 李璟芳, “土石流影像之機械視覺判識,” 第十二屆水利工程研討會論文及, J6-J13, 2001
3. 游勝任, 張守陽, 林志平, 梁仲志, ”防災監測影像前處理之研究,” 第十五屆水利工程研討會論文集, B96-B101, 2006
4. 詹錢登, 陳晉琪, “土石流體在直立旋轉式水槽內流動現象之初步實驗研究,” 第一屆土石流研討會論文集, pp.199-209, 1997
5. 劉榮斌, 林志平, 張守陽, “機械視覺判識土石流特性之初步研究,” 第十五屆水利工程研討會論文集, B149-B154, 2006
6. 繆紹剛 編譯, Gonzalez Woods 原著, “數位影像處理,” 台灣培生教育出版, 2003
7. Arattano, M., “On the use of seismic detectors as monitoring and warning systems for debris flows,” Natural Hazards, Vol. 20, pp.197-213, 1999
8. Baek, S. J., and Lee, S. J., “A new two-frame particle tracking algorithm using match probability,” Experiments in Fluids, Vol. 22, pp.23-32, 1996
9. Boateng, A. A., and Barr, P. V., “Granular flow behaviour in the transverse plane of a partially filled rotating cylinder,” Journal of Fluid Mechanics, Vol. 330, pp. 233-249, 1997
10. Capart, H., Young, D. L., and Zech. Y., “Vorono imaging methods for the measurement of granular flows,” Experiments in Fluids, Vol. 32, pp.121-135, 2002
11. Capart, H., Fraccarollo, L., Guarino, L., and Armanini, A., “Granular temperature behaviour of loose bed debris-flows,” pp.361-368, 2000
12. Davies, E. R., “Machine vision: theory, algorithms, practicalities,” Morgan Kaufmann Publishers, 2005
13. Duda, R. O., and Hart, P. E., “Use of the Hough transform to detect lines and curves in pictures,” Communications of the ACM, Vol. 18(9), pp.509-517, 1975
14. Hough, P. V. C., “Methods and means for recognizing complex patterns,” US Patent 3069654, 1962
15. Jain, N., Ottino, J. M., and Lueptow, R. M., “An experimental study of the flowing granular layer in a rotating tumbler,” Physics of Fluids, Vol. 14, pp.572-582, 2002
16. Kierkegaard, p., “A method for detection of circular arcs based on the Hough transform,” Machine Vision and Application, Vol.5, pp.249-263, 1992
17. Lueptow, R. M., Akonur, A., and Shinbrot T., “PIV for granular flows,” Experiments in Fluids, Vol. 28, pp.183-186, 2000
18. Majors, P. D., Givler, R. C., Fukushima, E., “Velocity and concentration measurements in multiphase flows by NMR,” Journal of Magnetic Resonance, Vol. 85, pp.235-243, 1989
19. Nakagawa, M., Altobelli, S. A., Caprihan, A., Fukushima, E., and Jeong, E. K., “Non-invasive measurements of granular flows by magnetic resonance imaging,” Experiments in Fluids, Vol. 16, pp.54-60, 1993
20. Savage, S. B., “Analyses of slow high-concentration flows of granular materials,” Journal of Fluid Mechanics, Vol. 377, pp.1-26, 1998