| 研究生: |
吳宇勝 Wu, Yu-Sheng |
|---|---|
| 論文名稱: |
超音波霧化熱裂解法沉積氧化鋁於氮化鎵高電子遷移率電晶體之研究 Study of Al2O3 Deposition on AlGaN/GaN HEMT by Using Ultrasonic Spray Pyrolysis Technique |
| 指導教授: |
許渭州
Hsu, Wei-Chou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 氮化鋁鎵/氮化鎵 、高電子遷移率電晶體 、超音波霧化熱裂解法 |
| 外文關鍵詞: | AlGaN/GaN, high electron mobility transistor, ultrasonic spray pyrolysis deposition |
| 相關次數: | 點閱:117 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討利用超音波霧化熱裂解法沉積氧化鋁於氮化鋁鎵/氮化鎵高電子遷移率電晶體之研究。並探討將氮化矽與氧化鋁使用雙疊鈍化技術應用於氮化鋁鎵/氮化鎵高電子遷移率電晶體,以獲得較佳之可靠度及較低漏電流。
為瞭解超音波霧化熱裂解法所形成之氧化層的組成,在本論文中使用了原子力顯微鏡、穿透電子顯微鏡、化學分析電子儀與霍爾量測進行探討。在原子力顯微鏡量測中,可以驗證成長的薄膜相當的均勻。在穿透電子顯微鏡中,觀察成長的薄膜厚度為20奈米。在化學分析電子儀中的縱深分析,可得知氧化層中的化學成分組成確認是氧化鋁。在霍爾量測中,發現利用超音波霧化熱裂解法沉積氧化鋁使得片電子濃度有所上升而電子遷移率有些許下降。除此之外,我們也利用遲滯效應與表面狀態密度判定鈍化製程所能降低表面缺陷之幅度。
在瞭解薄膜之材料分析後,進一步研究氮化矽、氧化鋁以及雙疊鈍化技術應用於氮化鋁鎵/氮化鎵高電子遷移率電晶體上。我們發現使用雙疊技術在漏電流特性可抑制至3.6×10-4 mA/mm與氮化矽之漏電流為2.9×10-2 mA/mm,相較後有較佳的特性表現。此外,使用雙疊技術的元件與氧化鋁相比有更佳的抗腐蝕以及可靠度能力。
而超音波霧化熱裂解法沉積氧化鋁於金氧半高電子遷移率電晶體上,先利用比較不同厚度找出最佳的元件特性,同時也發現在厚度為20奈米的氧化層之元件有最佳的特性改善。在電流電壓特性可操作至4伏特閘極電壓,崩潰電壓可承受至182伏特。除此之外,在功率表現上,功率附加效率提升至42 %,因此超音波霧化熱裂解法沉積氧化鋁之元件具有提升高功率以及高頻率元件之潛力。
This research proposes the investigation of aluminum oxide (Al2O3) and stacked Si3N4/Al2O3 on the AlGaN/GaN high electron mobility transistors (HEMTs) by using ultrasonic spray pyrolysis deposition (USPD). We found that the stacked Si3N4/Al2O3 on the AlGaN/GaN HEMTs achieved better reliability and lower leakage current.
In order to analyze the oxide layer composition, we utilized the atomic force microscopy (AFM), transmission electron microscopy (TEM), electron spectroscopy for chemical analysis (ESCA), and Hall measurement in the research. We observe that the surface roughness is quite uniform by AFM. Then, we confirm that the thickness of oxide layer is 20 nm through TEM. Besides, in ESCA analysis, the results show the oxide layer is exactly Al2O3. Moreover, Hall measurement is compared with passivated device, the sheet concentration is increased and the electron mobility slightly reduced. In addition, the decreased oxide layer trap density is confirmed by the hysteresis and interface state density.
Si3N4, Al2O3, and stacked passivation are applied to the fabrication of AlGaN/GaN HEMTs. We found that stacked passivation device can suppress gate leakage to be 3.6×10-4 mA/mm which is better than 2.9×10-2 mA/mm of Si3N4-passivated device. Furthermore, anti-corrosion and reliability of the stacked passivation device is better than Al2O3-passivated device.
Finally, we propose that the Al2O3 oxide layer applied to metal-oxide-semiconductor (MOS) HEMTs by using ultrasonic spray pyrolysis technique is studied the optimal thickness of the oxide layer is 20 nm. The gate voltage of device can be operated up to 4 V and the breakdown voltage is -182 V. Moreover, the power-add efficiency (P.A.E.) achieves 42 %. Therefore, the device which passivated Al2O3 on the AlGaN/GaN HEMTs by using ultrasonic spray pyrolysis technique is suitable for high power and high frequency applications.
[1] M. Kameche, and N. V. Drozdovski, “GaAs-, InP-, and GaN HEMT-based Microwave Control Devices: What is Best and Why,” Microwave J., vol. 48, no. 5, pp. 64-180, 2005.
[2] Z. H. Liu, G. I. Ng, S. Arulkumaran, Y. K. T. Maung, K. L. Teo, S. C. Foo, and V. Sahmuganathan,“Improved two-dimensional electron gas transport characteristics in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor with atomic layer-deposited Al2O3 as gate insulator,” Appl. Phys. Lett., vol. 95, pp. 223501-1-223501-3, 2009.
[3] P. Kordoš, D. Gregušová, R. Stoklas, Š. Gaž , and J. Novák,“Transport properties of AlGaN/GaN metal–oxide–semiconductor heterostructure Field-effect Transistors with Al2O3 of Different Thickness,” Solid-State Electron., vol. 52, pp. 973-979, 2008.
[4] S. Basu, P. K. Singh, P. W. Sze, and Y. H. Wang,“AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistor with Liquid Phase Deposited Al2O3 as Gate Dielectric,” J. Electrochem. Soc., vol. 157, no. 10, pp. H947-H951, 2010.
[5] O. Seok, W. Ahn, M. K. Han, and M. W. Ha,“High on/off current ratio AlGaN/GaN MOS-HEMTs employing RF-sputtered HfO2 gate insulators,” Semicond. Sci. Technol., vol. 28, pp. 025001-1-025001-6, 2013.
[6] H. Y. Liu, B. Y. Chou, W. C. Hsu, C. S. Lee, J. K. Sheu, and C. S. Ho, “Enhanced AlGaN/GaN MOS-HEMT Performance by Using Hydrogen Peroxide Oxidation Technique,” IEEE Trans. Electron Devices, vol. 60, no. 1, pp. 213-220, 2013.
[7] W. S. Tan, P. A. Houston, P. J. Parbrook, G. Hill and R. J. Airey, “Comparison of different surface passivation dielectrics in AlGaN/GaN heterostructure field-effect transistors,” J. of Phys. D: Appl. Phys., vol. 35, pp. 595-598, 2002.
[8] H. Y. Liu, B. Y. Chou, W. C. Hsu, C. S. Lee, and C. S. Ho, “Novel Oxide-Passivated AlGaN/GaN HEMT by Using Hydrogen Peroxide Treatment,” IEEE Trans. Electron Devices, vol. 58, no. 12, pp. 4430-4433, 2011.
[9] Y. F. Chen, F. R. Chen, and C. H. Tsai, “Compositional Effect of precursor Solution on Formation of Aluminum Oxide Passivation Layer Using Ultrasonic Spray Pyrolysis Deposition,” Department of Engineering and System Science, National Tsing Hua University, 2011.
[10] S. M. Sze and K. K. Ng, “Physics of Semiconductor Devices 3rd edition,” JOHN WILEY & SON, 2007.
[11] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6, pp. 3222-3233.
[12] H. P. Maruska, J. J. Tietjen, “The Preparation and Properties of Vapor-deposited Single Crystalline GaN,” Appl. Phys. Lett., vol. 15, no. 10, pp. 327-329, 1969.
[13] S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, “III-nitrides: Growth, Characterization, and Properties,” J. Appl. Phys., vol. 87, no. 3, pp. 965-1006, 2000.
[14] R. Gaska, J. W. Yang, A. Osinsky, Q. Chen, and M. A. Khan, A. O. Orlov, G. L. Snider, and M. S. Shur, “Electron transport in AlGaN–GaN heterostructures grown on 6H–SiC substrates,” Appl. Phys. Lett., vol. 72, no. 6, pp. 707-709, 1998.
[15] G. Landwehr, A. Waag, F. Fischer, H. J. Lugauer, K. Schüll, “Blue emitting heterostructure laser diodes,” Physica E, vol. 3, issue 1-3, pp. 158-168, 1998.
[16] T. B. Wang, “Improved Nitride-based Optical and Electrical Devices,” Ph.D. Thesis, National Cheng-Kung University, 2007.
[17] D. A. Neamen, “Semiconductor physics and devices: basic principles 3rd ed.,” Mc Graw Hill, New York, pp. 351-354, 2003.
[18] F. Sacconi, A. D. Carlo, P. Lugli, and H. Morkoc, “Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 450-457, Mar. 2001.
[19] M. A. Khan, J. N. Kuznia, D. T. Olson, W. J. Schaff, J. W. Burm, and M. S. Shur, “Microwave performance of a 0.25 μm gate AlGaN/GaN heterostructure field effect transistor,” Appl. Phys. Lett., vol. 65, pp. 1121-1123, 1994.
[20] A. Ӧzgür, W. Kim, Z. Fan, A. Botchkarev, A. Salvador, S. N. Mohammad, B. Sverdlov, and H. Morkoç, “High transconductance-normally-off GaN MODFETs,” IEEE Electron Device Lett., vol. 31, no. 16, pp. 1389-1390, 1995.
[21] Y. F. Wu, B. P. Keller, S. Keller, D. Kapolnek, S. P. Denbaars, and U. K. Mishra, “Measured Microwave Power Performance of AlGaN/GaN MODFET,” IEEE Electron Device Lett., vol. 17,no 9, pp. 455-457, 1996.
[22] Y. F. Wu, S. Keller, P. Kozodoy, B. P. Keller, P. Parikh, D. Kapolnek, S. P. Denbaars, and U. K. Mishra, “Bias Dependent Microwave Performance of AlGaN/GaN MODFET’s Up To 100 V,” IEEE Electron Device Lett., vol. 18,no 6, pp. 290-292, 1997.
[23] U. K. Mishra, Y. F. Wu, B. P. Keller, S. Keller, and S. P. Denbaars, “GaN Microwave Electronics,” IEEE Trans. Microwave Theory Tech., vol. 46,no 6, pp. 756-761, 1998.
[24] G. J. Sullivan, M. Y. Chen, J. A. Higgins, J. W. Yang, Q. Chen, R. L. Pierson, and B. T. McDermott, “High-Power 10-GHz Operation of AlGaN HFET’s on Insulating SiC,” IEEE Electron Device Lett., vol. 19,no 6, pp. 198-200, 1998.
[25] S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-Power Microwave GaN/AlGaN HEMT’s on Semi-Insulating Silicon Carbide Substrates,” IEEE Electron Device Lett., vol. 20,no 4, pp. 161-163, 1999.
[26] W. Lu, J. Yang, M. A. Khan, and I. Adesida, “AlGaN/GaN HEMTs on SiC with over 100 GHz fT and Low Microwave Noise,” IEEE Trans. Electron Devices, vol. 48, no 3, pp. 581-585, 2001.
[27] J. B. Mooney and S. B. Radding, “SPRAY PYROLYSIS PROCESSING,” Ann. Rev. Mater. Sci, vol. 12, pp. 81-101, 1982.
[28] G. Binnig, C. F. Quate, and Ch. Gerber, “Atomic Force Mircoscope,” Phys. Rev. Lett., vol. 56, no. 9, pp. 930-933, 1986.
[29] Y. Martin, C. C. Williams, and H. K. Wickramasinghe, “Atomic force mircoscope-force mapping and profiling on a sub 100 Å scale,” Appl. Phys. Lett., vol. 61, pp. 4723-4729, 1987.
[30] J. C. Vickerman, “Surface Analysis-the Principal Techniques,” John Wiley & Son, 2000.
[31] B. G. Yacobi, “Semiconductor Materials: an Introduction to Basic Principles,” Kluwer Academic, 2003.
[32] Edwin Hall, “On a New Action of the Magnet on Electric Currents,” American Journal of Mathematics, vol. 2, no. 3, pp. 287–292, 1879.
[33] P. D. Ye, B. Yang, K. K. Ng, J. Bude, G. D. Wilk, S. Halder and J. C. M. Hwang, “GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric,” Appl. Phys. Lett., vol. 86, pp. 063501, 2005.
[34] S. Saadaoui, M. M. B. Salem, O. Fathallah, M. Gassoumi, C. Gaquière, and H. Maaref, “Leakage current, capacitance hysteresis and deep traps in Al0.25Ga0.75N/GaN/SiC high-electron-mobility transistors,” Physica B, vol. 412, pp. 126-129, 2013.
[35] E. H. Nicollian and J. R. Brews, “MOS (Metal Oxide Semiconductor) Physics and Technology,” New York: Wiley, 1982.
[36] S. J. Chang and J. G. Hwu, “Comprehensive Study on Negative Capacitance Effect Observed in MOS(n) Capacitors With Ultrathin Gate Oxides,” IEEE Trans. Electron Devices, vol. 58, no. 3, pp. 684-690, 2011.
[37] Z. Lin, W. Lu, J. Lee, D. Liu, J. S. Flynn, and G. R. Brandes, “Barrier heights of Schottky contacts on strained AlGaN/GaN heterostructures: Determination and effect of metal work functions,” Appl. Phys. Lett., vol. 82, no. 24, pp. 4364-4366, 2003.
[38] M. Capriotti, A. Alexewicz, C. Fleury, M. Gavagnin, O. Bethge, D. Visalli, J. Derluyn, H. D. Wanzenböck, E. Bertagnolli, D. Pogany, and G. Strasser, “Fixed interface charges between AlGaN barrier and gate stack composed of in situ grown SiN and Al2O3 in AlGaN/GaN high electron mobility transistors with normally off capability,” Appl. Phys. Lett., vol. 104, pp. 113502-1-113502-4, 2014.
[39] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, “The Impact of Surface States on the DC and RF Characteristics of AlGaN/GaN HFETs,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 560-566, 2001.
[40] T. Y. Wu, S. K. Lin, P. W. Sze, J. J. Huang, W. C. Chien, C. C. Hu, M. J. Tsai, and Y. H. Wang, “AlGaN/GaN MOSHEMT with liquid-phase-deposited TiO2 as gate dielectric,” IEEE Trans. Electron Devices, vol. 56, no. 12, pp. 2911-2916, 2009.
[41] S. L. Selvaraj, A. Watanabe, A. Wakejima, and T. Egawa, “1.4-kV Breakdown Voltage for AlGaN/GaN High-Electron-Mobility Transistors on Silicon Substrate,” IEEE Electron Device Lett., vol. 33, no. 10, pp. 1375-1377, 2012.
[42] Q. Zhou, W. Chen, S. Liu, B. Zhang, Z. Feng, S. Cai, and K. J. Chen, “Schottky-contact Technology in InAlN/GaN HEMTs for Breakdown Voltage Improvement,” IEEE Trans. Electron Devices, vol. 60, no. 3, pp. 1075-1081, 2013.
[43] M. K. Chattopadhyay, and S. Tokekar, “Temperature and Polarization Dependent Polynomial Based Non-linear Analytical Model for Gate Capacitance of AlmGa1-mN/GaN MODFET,” Solid-State Elctron., vol. 50, pp. 220-227, 2006.
[44] P. H. Lai, S. I. Fu, Y. Y. Tsai, C. H. Yen, H. M. Chuang, S. Y. Cheng, and W. C. Liu, “Thermal-Stability Improvement of a Sulfur-Passivated InGaP/InGaAs/GaAs HFET,” IEEE Trans. on Device and Materials Reliability,, vol. 6, no. 1, pp. 52-59, 2006.
[45] A. Fontserè, A. P. Tomás, M. Placidi, N. Baron, S. Chenot, J. C. Moreno, S. Rennesson, and Y. Cordier, “Molecular Beam Epitaxial AlGaN/GaN High Electron Mobility Transistors Leakage Thermal Activation on Silicon and Sapphire,” Appl. Phys. Lett., vol. 102, pp. 093503-1-093503-5, 2013.
[46] P. B. Klein, S. C. Binari, K. Ikossi, A. E. Wickenden, D. D. Koleske, and R. L. Henry, “Current collapse and the role of carbon in AlGaN/GaN high electron mobility transistors grown by metalorganic vapor-phase epitaxy,” Appl. Phys. Lett., vol. 79, no. 21, pp. 3527-3529, 2001.
[47] S. Arulkumaran, T. Egawa, H. Ishikawa, and T. Jimbo, “Comparative study of drain-current collapse in AlGaN/GaN high electron mobility transistors on sapphire and semi-insulating SiC,” Appl. Phys. Lett., vol. 81, no. 16, pp. 3073-3075, 2002.
[48] P. Kordoša, J. Bernát, M. Marso, H. Lüth, F. Rampazzo, G. Tamiazzo, R. Pierobon, and G. Meneghesso, “Influence of gate-leakage current on drain current collapse of unpassivated GaN/AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett., vol. 86, pp. 253511-1-253511-3, 2005.
[49] H. Y. Liu, B. Y. Chou, W. C. Hsu, C. S. Lee, and C. S. Ho, “A Simple Gate-dielectric Fabrication Process for AlGaN/GaN Metal–oxide–semiconductor High-electron-mobility Transistors,” IEEE Electron Device Lett., vol. 33, no. 7, pp. 997-999, 2012.
[50] F. Schwierz, and J. J. Liou, “Semiconductor devices for RF applications: evolution and current status,” Microelectronics Reliability, vol. 41, pp. 145-168, 2001.
[51] I. Bahl., “Fundamentals of RF and Microwave Transistor Amplifiers,” Wiley-Interscience, N. J., Ch3, 2009.
[52] F. Ellinger, “Radio frequency integrated circuits and technologies,” Springer, 2007.
[53] E. M. Chumbes, J. A. Smart, T. Prunty, and J. R. Shealy, “Microwave Performance of AlGaN/GaN Metal Insulator Semiconductor Field Effect Transistors on Sapphire Substrates,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 416-419, 2001.