| 研究生: |
陳世綸 Chen, Shih-Lun |
|---|---|
| 論文名稱: |
適應性影像縮放與校正器之即時內視鏡系統應用於低功率無線身體感測網路 Adaptive Image Scalar and Corrector in Real-Time Video-Endoscopic System for Low Power Wireless Body Sensor Network |
| 指導教授: |
羅錦興
Luo, Ching-Hsing |
| 共同指導教授: |
黃弘一
Huang, Hong-Yi |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 無線身體感測網路 、適應性低功率設計 、內視鏡系統 、筒狀失真校正 、影像縮放器 |
| 外文關鍵詞: | Wireless Body Sensor Network, Adaptive Low Power Design, Video Endoscopic System, Barrel Distortion Correction, Image Scalar |
| 相關次數: | 點閱:116 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個即時內視鏡系統應用於低功率無線身體感測網路,此系統主要包含三部份:可適應性低功率無線通訊協定與感測結點、筒狀失真影像校正器與高品質適應性影像縮放器。無線膠囊內視鏡是身體感測網路結點的一種,它從廣角鏡頭取得影像後透過一個適應性低功率無線通訊協定傳送至醫院的中央系統,由於所取得的影像經由廣角鏡造成失真,必需透過筒狀失真校正器校正影像;為了提供醫生高畫質影像進行診斷,校正後的低解析度影像需要被放大成高解析度影像。根據影像校正與縮放的高速需求,超大型積體電路被使用來實現應用於即時內視鏡系統中的影像校正器與縮放器。
校正器的電路架構基於最小平方法近似,硬體成本與記憶體需求減少藉由奇數級數近似、霍諾演算法、時間多工設計與線性內插簡化。影像縮放器是由一個新穎的演算法實現,它包含一個雙線性內插、一個鉗位濾波器與一個銳化空間濾波器;為了增加解決由雙線性內插所產生的模糊與混疊效應的能力,一個適應性技術被用來增進鉗位與銳化空間濾波器的效果;在超大型積體電路的實現上,為了減少記憶體緩衝器的使用,一個三乘三的鉗位濾波器和一個三乘三銳化空間濾波器結合成一個五乘五的迴旋濾波器,而雙線性內插電路由硬體共用技術簡少運算資源的使用。為了長時間無線身體感測網路的使用,可適應性低功率無線通訊協定與功率管理技術在本研究中被發展出來;再者,為了減少傳輸的資料量與能夠精準控制每部份功能電路的功率消耗,資料壓縮器與功率管理器被設計在每一個感測結點中;為了增進系統的效能,一個通訊週期與精準的管線化控制用來同步與操作整個無線身體感測網路。
影像校正器與縮放器的超大型積體電路架構分別包含13,900邏輯閘與92,800邏輯閘,與先前的技術相比,本論文所提出的影像校正器減少69%的硬體成本與75%的記億體需求,而本論文所提出的影像縮放器不僅減少46.6%的硬體成本,並且還增加至少0.42dB的影像品質;因此相較於由先前技術所組成的內視鏡系統,本論文所提出的系統可減少60.6%的硬體成本與74.9%的記憶體需求;最後,相較於一般沒有適應性低功率設計之無線通訊協定,本論文所提出適應性低功率設計可節省96.4%的功率消耗。
This thesis presents a real-time video-endoscopic system for a low power wireless body sensor network (WBSN). The proposed WBSN system consists of three parts, an adaptive low power wireless communication protocol and sensor nodes, a barrel distortion image corrector, and a high-quality adaptive image scalar. A wireless capsule endoscopy, which is one kind of sensor nodes, captures images with wide-angle lens and transmits the images to a central system by an adaptive low power wireless communication protocol. Since the captured image is distorted by wide-angle lens, it should be corrected by the barrel distortion image corrector. To be able to get high quality images for doctor diagnosis, the corrected images with low resolution are necessary to scale up with higher resolution. According to high speed demand for image correcting and scaling, the VLSI is used to implement the image corrector and scalar for real-time video-endoscopic system.
The VLSI architecture of the corrector is based on least-squares estimation. The hardware cost and memory requirement are reduced by an odd-order polynomial approximating, Hornor’s algorithm, time multiplexed design and a simplified linear interpolation. The scalar is implemented by a novel scaling algorithm which consists of bilinear interpolation, a clamp filter, and a sharpening spatial filter. To enhance the ability of solving the blurring and aliasing effects caused by the bilinear interpolation, an adaptive technique is used to improve the purposes of the clamp and sharpening spatial filters. To reduce memory buffers and computing resources for the VLSI implementation, a 3×3 clamp filter and a 3×3 sharpening spatial filters are combined into a 5×5 convolution filter. In addition, the bilinear interpolation is simplified by a hardware sharing technique. For long-time usage of the WBSN system, adaptive low power communication protocol and power management technique are developed. Furthermore, a data encoder and a power management are designed into each sensor node to decrease the transmission data rate and handle the power of each function accurately. To improve the system performance, a communication cycle is constructed to synchronize the WBSN with accurate pipeline control.
The VLSI architecture of the corrector or scalar contains 13.9-K gates or 9.28-K gates. As compared with previous techniques, the proposed corrector design reduces at lest 69 % hardware cost and 75 % memory requirement. The proposed scalar design not only decreases hardware cost by more than 46.6 % but also improves average quality of scaled image by 0.42 dB. Consequently, the proposed video endoscopic system reduces at least 60.6 % hardware cost and 74.9 % memory requirement than the system composed by previous works. Finally, comparing with communication protocol without adaptive low power design, the power consumption of proposed adaptive communication protocol with adaptive low power design is saved over 96.4 % as compared with the system without adaptive low power design for five various body sensor nodes application.
[1] C. C. Enz, A. El-Hoiydi, J. D. Decotignie, V. Peiris, “WiseNET: an ultralow-power wireless sensor network solution”, IEEE Computer, vol. 37, issue 8, Aug. 2004, pp.62 - 70.
[2] K. Romer; F. Mattern, “The Design Space of Wireless Sensor Networks". IEEE Wireless Communications Vol. 11, Issue 6, pp: 54-61, Dec.2004.
[3] H. Thomas, "Sensornetworks". GFDL Wireless Sensor Network textbook, 2006.
[4] S. L. Chen, H. Y. Lee, C. A. Chen, H. Y. Huang, and C. H. Luo, “Wireless body sensor network with adaptive low power design for biometrics and healthcare Applications,” IEEE Systems Journal, Vol. 3, no.4, pp. 398-409, Dec.2009.
[5] X. Zhang, H. Jiang, L. Zhang, C. Zhang, Z. Wang and X. Chen “An energy-efficient ASIC for wireless body sensor network in medical applications,” IEEE Transaction on Biomedical Circuits and Systems, Vol. 3 , no. 1, pp. 11-22, Feb. 2009.
[6] S. L. Chen, H. Y. Lee, Y. W. Chu, C. A. Chen, C. C. Lin, and C. H. Luo, “A Variable Control System for Wireless Body Sensor Network”, IEEE International Symposium on Circuits and Systems Conference 2008 (ISCAS’ 08), Seattle, Washington, USA, May 18-21, 2008, pp. 2034-2037.
[7] S. L. Chen, H. Y. Lee, C. A. Chen, H. Y. Huang, and C. H. Luo, “A Wireless Body Sensor Network System for Healthcare Monitoring Application”, IEEE Biomedical Circuits and System Conference 2007, Montreal, Canada, Nov 27-30, 2007, pp. 243-246.
[8] W. T. Chiu, P. W. Lin, and H.Y. Chiou, et al. “Infrared thermography to mass-screen suspected sars patients with fever,” Asia Pacific Journal of Public Health, Jan 2005; vol. 17: pp. 26 – 28.
[9] A. Karargyris and N. Bourbakis “Wireless capsule endoscopy and endoscopic imaging,” IEEE Engineering in Medicine and Biology Magazine, pp. 72-83, Feb. 2010.
[10] X. Chen, X. Zhang, L. Zhang, X. Li, N. Qi, H. Jiang and Z. Wang “A wireless capsule endoscope system with low-power controlling and processing ASIC,” IEEE Transaction on Biomedical Circuits and Systems, Vol. 3 , no. 1, pp. 11-22, Feb. 2009.
[11] X. Xie, G. Li, X. Chen, X. Li and Z. Wang “A low-power digital IC design inside the wireless endoscopic capsule,” IEEE Journal of Solid-State Circuits, Vol. 41 , no. 11, pp. 23904-2400, Nov. 2006.
[12] W. E. Smith, N. Vakil, and S. A. Maislin, “Correction of distortion in endoscopic images,” IEEE Trans. Med. Imag., vol. 11, no. 1, pp. 117–122, Jan. 1992.
[13] H. Hideaki, Y. Yagihashi, and Y. Miyake, “A new method for distortion correction of electronic endoscope images,” IEEE Trans. Med. Imag., vol. 14, no. 3, pp. 548–555, Mar. 1995.
[14] K. V. Asari, S. Kumar, and D. Radhakrishnan, “A new approach for nonlinear distortion correction in endoscopic images based on least squares estimation,” IEEE Trans. Med. Imag., vol. 18, no. 4, pp. 345–354, Apr. 1999.
[15] J. P. Helferty, C. Zhang, G. McLennan, and W. E. Higgins, “Videoendoscopic distortion correction and its application to virtual guidance of endoscopy,” IEEE Trans. Med. Imag., vol. 20, no. 7, pp. 605–617, Jul. 2001.
[16] J. Weng, P. Cohen, and M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 10, pp. 965–980, Oct. 1992.
[17] Y. Nomura, M. Sagara, H. Naruse, and A. Ide, “Simple calibration algorithm for high-distortion-lens camera,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 11, pp. 1095–1099, Nov. 1992.
[18] R. Swaminathan and S. K. Nayar, “Nonmetric calibration of wideangle lenses and polycameras,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 10, pp. 1172–1178, Oct. 2000.
[19] J. Kannala and S. S. Brandt, “A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 8, pp. 1335–1340, Aug. 2006.
[20] R. Hartley and S. B. Kang, “Parameter-free radial distortion correction with center of distortion estimation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 8, pp. 1309–1321, Aug. 2007.
[21] J. Park, S. C. Byun and B. U. Lee, “Lens distortion correction using ideal image coordinates,” IEEE Trans. Consumer Electronics, vol. 55, no. 3, pp. 987–991, Aug. 2009.
[22] V. K. Asari, “Design of an efficient VLSI architecture for non-linear spatial warping of wide-angle camera image,” J. Syst. Architec., vol. 50, pp. 743–755, Aug. 2004.
[23] H. T. Ngo and V. K. Asari, “A pipelined architecture for real-time correction of barrel distortion in wide-angle camera images,” IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 3, pp. 436–444, Mar. 2005.
[24] P. Y. Chen, C. C. Huang, Y. H. Shiau, and Y. T. Chen, “A VLSI implementation of barrel distortion correction for wide-angle camera images,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 56, no. 1, pp. 51–55, Jan. 2009.
[25] W. G. Horner. “A new method of solving numerical equations of all orders, by continuous approximation,” In Philosophical Transactions of the Royal Society of London, pp. 308–335, July 1819.
[26] P. Tummeltshammer, C. Hoe, and M. Puschel, “Time-multiplexed multiple-constant multiplication,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 9, pp. 1551–1563, Sep. 2007.
[27] Y. S. Kwon and C. M. Kyung, “Performance-driven event-based synchronization for multi-FPGA simulation accelerator with event time-multiplexing bus,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 9, pp. 1444–1456, Sep. 2005.
[28] A. Amanatiadis, and I. Andreadis, “An integrated architecture for adaptive image stabilization in zooming operation,” IEEE Trans. Consumer Electron., vol. 54, no. 2, pp. 600–608, May 2008.
[29] C. Weerasnghe, M. Nilsson, S. Lichman, and I. Kharitonenko, “Digital zoom camera with image sharpening and suppression,” IEEE Trans. Consumer Electron., vol. 50, no. 3, pp. 777–786, Aug. 2004.
[30] T. M. Lehmann, C. Gonner and K. Spitzer, “Survey: Interpolation methods in medical image processing,” IEEE Trans. Med. Imag., vol. 18, no. 11, pp. 1049–1075, Nov. 1999.
[31] V. Caselles, J. M. Morel and C. Sbert, “An axiomatic approach to image interpolation,” IEEE Trans. Image Process., vol. 7, no. 3, pp. 376–386, Mar. 1998.
[32] E. Meijering, K. J. Zuiderveld and M. A. Viergever, “Image reconstruction by convolution with symmetrical piecewise nth order polynomial kernels,” IEEE Trans. Image Process., vol. 8, no. 2, pp. 192–201, Feb. 1999.
[33] K. Jensen and D. Anastassiou, “Subpixel edge localization and the interpolation of still images,” IEEE Trans. Image Process., vol. 4, no. 3, pp. 285–295, Mar. 1995.
[34] W. Y. V. Leung, P. J. Bones and R. G. Lane, “Statistical interpolation of sampled images,” Opt. Eng., vol. 40, pp. 547–553, 2001.
[35] H. Hou and H. Andrew, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-26, no. 6, pp. 508–517, Dec. 1978.
[36] L. Liang, “Image interpolation by blending kernels,” IEEE Signal Processing Letters., vol. 15, pp. 805–808, 2008.
[37] X. Zhang and X. Wu, “Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation,” IEEE Trans. Image Process., vol. 17, no. 6, pp. 887–896, Jun. 2008.
[38] Q. Wang and R. K. Ward, “A new orientation-adaptive interpolation method,” IEEE Trans. Image Process., vol. 16, no. 4, pp. 889–900, Apr. 2007.
[39] H. Jiang and C. Moloney, “A new direction adaptive scheme for image interpolation,” in Proc. Int. Conf. Image Processing, Jun. 2002, pp. 369–372.
[40] A. M. Darwish, M. S. Bedair and S. I. Shaheen, “Adaptive resampling algorithm for image zooming,” in Proc. Inst. Elect. Eng. Visual Image Signal Process, 1997, pp. 207–212.
[41] M. Unser, “Enlargement or reduction of digital images with minimum loss of information,” IEEE Trans. Image Processing, vol. 4, pp. 247–258, Mar. 1995.
[42] A. Raghupathy, P. Hsu, K. J Ray Liu, and N. Chandrachoodan, “VLSI architecture and design for high performance adaptive VIDEO scaling,” in Proc. IEEE Int. Conf. Circuits and Systems, 1999, pp. 406-409.
[43] C. H. Kim, S. M. Seong, J. A. Lee and L. S. Kim, “Winscale : an image-scaling algorithm using an area pixel model”, IEEE trans. Circuit and System for Video Technology, Vol.13, NO. 6, pp. 549-553, Jun. 2003.
[44] Andreadis and A. Amanatiadis, “Digital image scaling,” in Proc. IEEE Instrum. Meas. Technol. Conf.,May 2005, vol. 3, pp. 2028–2032.
[45] C. C. Lin, M. H. Sheu, H. K. Chiang, W. K. Tsai, and Z. C. Wu, “Real-Time FPGA architecture of extended linear convolution for digital image scaling,” in Proc. IEEE Int. Conf. Field-Programmable Technology, 2008, pp. 381-384.
[46] S. Ridella, S. Rovetta, and R. Zunino, "Iavq--interval-arithmetic vector quantization for image compression", IEEE Transactions on Circuits and Systems, Part II, vol. 47, no. 12, pp. 1378--1390, December 2000.
[47] B. E. Shi and L. O. Chua, “Resistive grid image filtering: Input/output analysis via the CNN framework,” IEEE Trans. Circuits Syst. I, vol. 39, pp. 531–548, July 1992.
[48] S. Schaller, J.E. Wildberger, R. Raupach, M. Niethammer, and K. Klingenbeck-Regn, “Spatial domain filtering for fast modification of the tradeoff between image sharpness and pixel noise in computed tomography,” IEEE Trans. Med. Imag., vol. 22, no. 7, pp. 846–853, Jul. 2003.
[49] Q. Wang and R. Ward, “A new edge-directed image expansion scheme,” in Proc. Int. Conf. Image Processing, Oct. 2001, vol. 3, pp. 899–902.
[50] D. C., D. E., and M. S., “Overview of sensor networks,” in IEEE Computer, Special Issue on Sensor Networks, August 2004.
[51] M. Avvenuti, P. Corsini, P. Masci and A. Vecchio, “Energy-efficient reception of large preambles in MAC protocols for wireless sensor networks,” ELECTRONICS LETTERS 1st March 2007 Vol. 43 No. 5.
[52] C. C. Enz, A. El-Hoiydi, J. D. Decotignie, V. Peiris, “WiseNET: an ultralow-power wireless sensor network solution,” IEEE Computer, vol. 37, issue 8, Aug. 2004, pp.62-70.
[53] “Bluetooth wireless Technology”, [Online] Available: http://www.zigbee.org.
[54] “Zigbee alliance”, [Online] Available: http://www.zigbee.org.
[55] “Nokia’s Wibree and the wireless zoo”, http://www.tfot.info, by Iddo Genuth, The Future of Things (TfoT) online magamine, 16th Nov., 2006.
[56] “CDMA technology”, [Online] Available: http://www.cdg.org.
[57] M. H. Jin, R. G. Lee, C. Y. Kao, Y. R. Wu, D. F. Hsu, T. P. Dong, and K. T. Huang, “Sensor network design and implementation for health telecare and diagnosis assistance applications”, IEEE Int. Conf. on Parallel and Distributed Systems,2005
[58] E. Lamprinos, A. Prentza, E. Sakka, D. Koutsouris, “Energy-efficient MAC protocol for patient personal area networks”,.
[59] S. L. Chen, H. Y. Lee, C. A. Chen, H. Y. Huang, and C. H. Luo, “Wireless Sensor Network System by Separating Control and Data Path (SCDP) for Bio-medical Applications”, European Microwave Conference 2007 (EuMC’07), Munich, Germany, Oct 8-12, 2007, pp. 430-433.
[60] S. L. Chen, H. Y. Lee, C. A. Chen, H. Y. Huang, and C. H. Luo, “An architecture of wireless biomedical sensor network for monitoring applications”, International Journal of Electrical Engineering (IJEE), Vol. 16, No.5, pp. 403-409, Oct., 2009.
[61] H. Y. Lee, S. L. Chen, C. A. Chen, and C. H. Luo, “Wireless Thermal Sensor Network with Adaptive Low Power Design”, IEEE Engineering in Medicine and Biology International Conference 2007 (SFGBM), Lyon, France, Aug 23-26, 2007, pp. 5890-5893.
[62] M. T. El-Melegy and A. A. Farag, “Nonmetric lens distortion calibration: Closed-form solutions, robust estimation and model selection,” in Proc. IEEE ICCV2003, vol. 2, pp. 1554–1559, 2003.
[63] M. Marder, “Comparison of calibration algorithms for a low-resolution, wide angle, 3-D camera,” M.Sc. thesis, Stockholm, Sweden, 2005.
[64] W. G. Horner. “A new method of solving numerical equations of all orders, by continuous approximation,” In Philosophical Transactions of the Royal Society of London, pp. 308–335, July 1819.
[65] T. ElBatt and A. Ephremides, “Joint scheduling and power control for wireless ad hoc networks,” IEEE Transactions on Wireless Communications, vol. 3, no. 1, pp. 74-85, January 2004.
[66] S. L. Chen, H. Y. Huang, and C. H. Luo, “Time multiplexed VLSI architecture for real-time barrel distortion correction in video-endoscopic images,” IEEE Transaction on Circuits and Systems for Video Technology, accepted.
[67] J. D. Bruguera, N. Guil, T. Lang, J. Villalba, and E. L. Zapata, “CORDIC based parallel/pipelined architecture for the Hough transform,” J. VLSI Signal Process., pp. 207–221, Jan. 2001.
[68] S. L. Chen, Hong-Yi Huang, and Ching-Hsing Luo, “A low-cost high-quality adaptive scalar for real-time multimedia applications,” IEEE Transaction on Circuits and Systems for Video Technology. accepted.
[69] D. Barrettino, M. Graf, H. S. Wan; K. U. Kirstein, A. Hierlemann, H. Baltes, “Hotplate-Based Monolithic CMOS Microsystems for Gas Detection and Material Characterization for Operating Temperatures up to 500 C,” IEEE JSSC, Vol.SC-39, Issue 7, pp.1202–1207, Jul. 2004.
[70] H. Y. Lee, S. L. Chen, C. H. Luo, “A CMOS smart thermal sensor for biomedical application”, The Institute of Electronics, Information and Communication Engineers (IEICE), Vol. E91-C, No.1, pp. 96-104, Jan., 2008.
[71] M. A. P. Pertijs, A. Niederkorn, X. Ma, B. McKillop, A. Bakker and J.H. Huijsing, “A CMOS Smart Temperature Sensor With a 3σ Inaccuracy of ±0.5 oC From -50 oC to 120 oC,” IEEE JSSC, Vol.40, No.2, Feb. 2005.
[72] M. A. P. Pertijs, K. A. A. Makinwa, and J. H. Huijsing, “A CMOS Smart Temperature Sensor With a 3σ Inaccuracy of ±0.1 oC From -55 oC to 125 oC,” IEEE JSSC, Vol.40, No.12, Dec. 2005.
[73] D. A. Huffman, “A method for the construction of minimum redundancy codes,” In the Proceedings of the Institute of Radio Engineers 40 (1951), pp. 1098-1101.
[74] G. B. Moody and R. G. Mark, “The impact of the MIT/BIH arrhythmia database,” IEEE Eng. Med. Biol. Mag., vol. 20, no. 3, pp. 45–50, May/ Jun. 2001.
[75] C. A. Chen, H. Y. Lee, Shih-Lun Chen, Hong-Yi Huang, and Ching-Hsing Luo, “The Low Power 2.4GHz Transceiver in Wireless Sensor Network for Bio-medical Applications”, IEEE Biomedical Circuits and System Conference 2007, Montreal, Canada, Nov 27-30, 2007, pp. 239-242.
[76] [Online]. Available: http://www.gastrointestinalatlas.com
[77] C. C. Lin, Z. C. Wu, W. K. Tsai, M. H. Sheu, and H. K. Chiang, “The VLSI design of winscale for digital image scaling,” in Proc. IEEE Int. Conf. Intelligent Information Hiding and Multimedia Signal Processing, 2007, pp. 511-514.
[78] C. C. Lin, M. H. Sheu, H. K. Chiang, C. Liaw and Z. C. Wu, “The efficient VLSI design of BI-CUBIC convolution interpolation for digital image processing,” in Proc. IEEE Int Conf. Circuits and System, 2008, pp. 480-483.
[79] O. Omeni, A. C.W. Wong, A. J. Burdett, and C. Toumazou, “Energy Efficient Medium Access Protocol for Wireless Medical Body Area Sensor Networks,” IEEE Transactions on Biomedical Circuits and Systems, Vol.2, no.4, pp.251–259, Dec. 2008.
[80] Varshney, U, “Improving Wireless Health Monitoring Using Incentive-Based Router Cooperation,” Computer, vol. 41, issue 5,, pp. 56–62, May. 2008.
[81] H. D, F.J. L, T. M, S. W, S. N, D. F, and C. A, “Multi data fusion for non-invasive continuous glucose monitoring,” Information Fusion 10th International Conference, July 9-12, 2007.
[82] P. Li, S. H. Sur, R. E. Mistlberger, and M. Morris. “Circadian blood pressure and heart rate rhythms in mice,” Am J Physiol 276: R500-R504, 1999.
[83] C. T. L., L. W. K., J. C. C., J. R. D., R. S. H., S. F. L., T. W. C., T. P. J., “Noninvasive Neural Prostheses Using Mobile and Wireless EEG”, Proceedings of the IEEE, vol. 96, no. 7, pp. 1167–1183, Jul. 2008.
[84] AD8553 Data Sheet. Analog Devices Products. [Online] Available: http://www.analog.com
[85] J. Polastre, J. Hill, and D. Culler, “Versatile Low Power Media Access for Wireless Sensor Networks,” Proceedings of the Second ACM Conference on Embedded Networked Sensor Systems (SenSys), November 3-5, 2004.
[86] G. Zhou, C. Huang, T. Yan, J. A. Stankovic, and T. F. Abdelzaher, “MMSN: Multi-Frequency Media Access Control for Wireless Sensor Networks,” IEEE INFOCOM, 2006.
[87] R. Jurdak, P. Baldi, and C. V. Lopes, “Adaptive Low Power Listening for Wireless Sensor Networks,” IEEE Trans. on Mobile Computing archive vol. 6 , issue 8, Aug. 2007.
[88] W. Ye, J. Heidemann, and D. Estrin, “Medium Access Control with Coordinated, Adaptive Sleeping for Wireless Sensor Networks,” IEEE Trans. Networking, Apr. 2004.
[89] A. Bakker and J.H. Huijsing, “Micropower CMOS temperature sensor with digital output,” IEEE JSSC, Vol. 31, Issue 7, pp.933–937, Jul. 1996.
[90] M. Tuthill, “A switched-current, switched-capacitor temperature sensor in 0.6-μm CMOS,” IEEE JSSC, Vol.SC-33, pp.1117–1122, July 1998.
[91] (2008, Mar) LM92 Data Sheet. National Semiconductor Corporation. [Online].
[92] (2008, May) DS1626 Data Sheet. Maxim Int. Products. [Online]. Available: http://www.maxim-ic.com
[93] M. Ekstrom, “Small wireless ECG Bluetooth communication to a PDA,” Thesis in electronic sciences performed at department of computer science and electronics, Malardalen University, 2006
[94] C. Park, P. H. Chou,Y. Bai, R. Matthews, and A. Hibbs. “An Ultra-Wearable, Wireless, Low Power ECG Monitoring System,” IEEE Biomedical Circuit and System Conference, Nov. 2006.
[95] T. S. Lee, J. H. Hong, and M. C. Cho, “Biomedical Digital Assistant for Ubiquitous Healthcare,” IEEE Engineering in Medicine and Biology International Conference, Lyon, France, Aug 23-26, 2007.
[96] Y. Sakaue, and M. Makikawa, “Development of Wireless Biosignal Monitoring Device,” 6th International Special Topic Conference on ITAB, 2007, Tokyo
[97] B. E. Bayer, “Imaging array,” U.S. Patent 3 971 065, Jul. 20, 1976.
[98] H. A. Chang and H. H. Chen, “Stochastic color interpolation for digital cameras,” IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 8, pp. 964–973, Aug. 2007.
[99] K. Hirakawa and T. W. Parks, “Adaptive homogeneity-directed demosaicing algorithm,” IEEE Trans. Image Process., vol. 14, no. 3, Mar. 2005.
[100] R. Lukac, K. Martin, and K. N. Plataniotis, “Demosaicked image processing using local color ratios,” IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 6, pp. 914–920, Jun. 2004.
[101] M. Najim, Digital Filters Design for Signal and Image Processing. CA: Newpor-Beach, 2006, ch. 11.
[102] D. Goodman, “Some stability properties of two-dimensional linear shift-invariant digital filters,” IEEE Trans. Circuits Syst., vol. CAS-24, pp. 201–208, Apr. 1977.
[103] H. Chang and J. K. Aggarwal, “Design of two-dimensional semicausal recursive filters,” IEEE Trans. Circuits Syst., vol. CAS-25, no. 12, pp. 1051–1059, Dec. 1978.