簡易檢索 / 詳目顯示

研究生: 林玠佑
Lin, Jie-You
論文名稱: 採用通用圖形處理器輔助運算且考量熱影格計算負載之適用於三維晶片電子系統層級設計的溫度模擬器
A GPU-Assist Thermal Simulator Considering Thermal Frame Computing Load for Three Dimensional Integrated Circuits at Electronic System Level
指導教授: 邱瀝毅
Chiou, Lih-Yih
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 51
中文關鍵詞: 電子系統層級通用圖形處理器輔助運算溫度模擬器暫態溫度分析
外文關鍵詞: Electronic system level, GPU-assist, Thermal Simulator, Transient thermal analysis
相關次數: 點閱:97下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著製程進步與需求,系統架構的複雜度提升以及三維晶片的出現,導致晶片功率密度大幅上升,熱效應對晶片的影響變得更不可忽視,而近年來電子系統層級的概念被提出,透過建立虛擬平台,設計者便可以在系統開發初期進行軟硬體共同設計與模擬驗證,同時也可以藉由溫度模擬器對系統進行溫度評估,其中暫態溫度分析更能夠提供設計者系統運作時的溫度變化趨勢,輔助發展系統溫度管理機制。但隨著系統複雜度上升,暫態溫度分析的速度也隨之受到影響,因此如何加速複雜度日漸提升的系統晶片之暫態溫度分析速度便是一個重要的問題。
    本論文以通用圖形處理器輔助運算改良本實驗室所發展的Cooling Hotspot[4]溫度模擬器之暫態溫度分析速度,並提出以壓縮虛擬列稀疏矩陣向量乘法取代ㄧ般矩陣向量乘法減少不必要的運算,以及提出減少熱影格計算負載之方法,進ㄧ步提升使用通用圖形處理器時輔助運算的效率,達到加速暫態溫度分析速度的目的。

    As the ever-increasing performance requirements of SOC and process technology scaling, the power density of system-on-a-chip (SOC) increases accordingly and creates high temperature on the chip. Since thermal issues have negative impacts on IC reliability and performance, they have become important design constraints. At the same time, the concept of electronic system level design has been proposed for improving development efficiency as system complexity of SOC increases, the developers can build a virtual platform for the target SOC at a higher level of abstraction to perform quick software and hardware co-simulations and co-verifications at early stage of design. Considering thermal issues have become important design constraints, the developers should add thermal profiling mechanisms to the virtual platform. In thermal analyses, the transient thermal analysis can provide a dynamic on-chip temperature trend, which is a useful information for developing temperature management mechanisms. However, as the computation complexity increases, the transient thermal analysis speed decreases dramatically.

    This thesis uses not only GPU to assist the transient thermal analysis of Cooling Hotspot [4] thermal simulator, but also proposes a Virtual-Row Compressed Sparse Row sparse matrix vector multiplication algorithm to replace the ordinary matrix vector multiplication., Furthermore, a thermal frame computing load reduction method is devised to further improve the efficiency of GPU-assist computation. After applying the proposed methods, the speedup is about 10.455 times larger compared to the original Cooling Hotspot.

    摘要 i 致謝 vii 目錄 viii 表目錄 x 圖目錄 xi 第 1 章 緒論 1 1.1 研究概觀 1 1.2 研究動機 2 1.3 研究貢獻 2 1.4 論文架構 3 第 2 章 相關研究背景 4 2.1 溫度模擬器概觀 4 2.2 通用圖形處理器概觀 7 2.2.1 通用圖形處理器之運算特性與架構 7 2.2.2 NVIDIA CUDA編程模型 9 2.3 稀疏矩陣儲存格式與其向量乘法概觀 13 第 3 章 相關文獻探討 15 3.1 採用通用圖形處理器輔助運算之溫度模擬器 15 3.2 稀疏矩陣向量乘法 16 第 4 章 壓縮虛擬列矩陣向量乘法與減少計算負載之設計 21 4.1 問題描述 21 4.2 稀疏矩陣儲存格式與稀疏矩陣向量乘法演算法 21 4.2.1 壓縮虛擬列儲存格式 22 4.2.2 壓縮虛擬列矩陣向量乘法演算法 27 4.3 減少熱影格計算負載 30 第 5 章 實驗結果與分析 32 5.1 實驗環境設定 32 5.2 實驗一、驗證採用稀疏矩陣向量乘法之加速效果 33 5.3 實驗二、驗證減少熱影格計算負載加速效果 36 5.4 實驗三、驗證稀疏矩陣乘法與減少熱影格計算負載加速效果 39 5.5 實驗四、通用圖形處理器輔助運算時間分析 43 5.6 實驗五、與其他溫度模擬器模擬時間比較 44 第 6 章 結論與未來研究 46 6.1 結論 46 6.2 未來工作 47 參考文獻 48 個人簡歷 51

    [1]. P. Li, L.T. Pileggi, M. Asheghi, and R. Chandra, "IC thermal simulation and modeling via efficient multigrid-based approaches", IEEE Trans. CAD of Integrated Circuits and Systems, pp.1763-1776, 2006.
    [2]. H. Wang, D. Li, S.X. Tan, M. Tirumala, and A.X. Gupta, "Composable thermal modeling and characterization for fast temperature estimation," in Proc. IEEE Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), pp. 185-188, 2010.
    [3]. S. Heo, K. Barr, K. Asanovic, “Reducing power density through activity migration,” in Proc. International Symposium on Low Power Electronics and Design (ISLPED), pp.217-222, 2003.
    [4]. LPHP Lab. , “Cooling Hotspot,” unpublished.
    [5]. N. Bell and M. Garland, "Implementing sparse matrix-vector multiplication on throughput-oriented processors," in Proc. High Performance Computing Networking, Storage and Analysis Conference, pp. 1-11, 2009.
    [6]. NVIDIA CUDA, Internet: www.nvidia.com/object/cuda_home_new.html.
    [7]. K. Skadron, T. Abdelzaher, and M. R. Stan, “Control-theoretic techniques and thermal RC modeling for accurate and localized dynamic thermal management,” in Proc. International Symposium on High Performance Computer Architecture, pp.17-28, 2002.
    [8]. L. He, W. Liao and M. R. Stan, “System Level Leakage Reduction Considering the Interdependence of Temperature and Leakage,” in Proc. Design Automation Conference, pp. 12-17, 2004.
    [9]. Y. Cheng, C. Tsai, C. Teng, and S. Kang, Electrothermal Analysis of VLSI Systems, Norwell, MA: Kluwer, 2000.
    [10]. J. Nickolls, I. Buck, M. Garland, and K. Skadron. “Scalable parallel programming with CUDA,” Queue, Volume 6 Issue 2:pp. 40–53, Mar/Apr 2008.
    [11]. “HOW TO EFFICIENTLY USE GLOBAL MEMORY? (COALESCING ISSUE), ” Internet: www.mindfiresolutions.com/Coalescing-Global-Memory-Access.htm, [Mar. , 2014].
    [12]. X.-X. Liu, Z. Liu, S. X.-D. Tan, and J. Gordon, "Full-chip thermal analysis of 3D ICs with liquid cooling by GPU-accelerated GMRES method," in Proc. International Symposium on Quality Electronic Design (ISQED), pp. 123-128, 2012.
    [13]. Z. Feng, and P. Li, "Fast thermal analysis on GPU for 3D-ICs with integrated microchannel cooling," in Proc. IEEE/ACM International Conference Computer-Aided Design (ICCAD), pp. 551-555, 2010.
    [14]. H. Pabst, B. Bachmayer, M. Klemm, “Performance of a Structure-Detecting SpMV Using the CSR Matrix Representation,” in Proc. International Symposium on Parallel and Distributed Computing (ISPDC), pp. 3-10, 2012.
    [15]. T. Gkountouvas, V. Karakasis, K. Kourtis, G. Goumas, N. Koziris, “Improving the Performance of the Symmetric Sparse Matrix-Vector Multiplication in Multicore,” in Proc. International Symposium on Parallel & Distributed Processing (IPDPS) , pp.273-283, 2013.
    [16]. L.-Y. Chiou, L.-Y. Lu, Z.-H. Chen, Y.-H. Su, J.-C. Yeh, Y.-F. Chen, and S.-C. Lin, "System thermal analysis of 3D IC on ESL virtual platform," in Proc. SoC Design Conference (ISOCC), pp. 394-397, 2013.
    [17]. VLSI Test Lab. , CAS Lab. , MSPM SOC Lab. , LPHP Lab. , SSCAS Lab. , SEDA Lab. , VACSD Lab. , APSIC Lab. , “ NCKU Dual-Core Processor," unpublished.
    [18]. K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D. Tarjan, "Temperature-aware microarchitecture," in Proc. Annual International Symposium on Computer Architecture, pp. 2-13, 2003.
    [19]. A. Boeing, “Butterfly pattern reduction,” Internet: adrianboeing.blogspot.tw/2010/08/using-parallel-reduction-to-optimize.html, Aug. 4, 2010 [Mar. , 2014].
    [20]. W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and M. R. Stan, "HotSpot: a compact thermal modeling methodology for early-stage VLSI design," IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 14, pp. 501-513, 2006.
    [21]. ANSYS Icepak, Internet: www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Specialized+Products/ANSYS+Icepak.

    無法下載圖示 校內:2019-09-11公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE