簡易檢索 / 詳目顯示

研究生: 張晏瑞
Chang, Yen-Jui
論文名稱: 瀝青混凝土性質對降溫過程之影響
Influence of Properties of Asphalt Concrete on Pavement Cooling
指導教授: 張介民
Chang, Chieh-Min
陳建旭
Chen, Jian-Shiuh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 174
中文關鍵詞: 降溫速率允許開放交通溫度中斷溫度
外文關鍵詞: maximum open traffic temperature, cessation temperature, cooling rate
相關次數: 點閱:101下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋪面施工過程中,瀝青種類、級配種類、天氣狀況、路基溫度、鋪築厚度、施工過程等皆影響材料的降溫速率。為避免鋪築時壓實度不足的情況發生,及造成開放交通之後對於鋪面之傷害,分析溫度與鋪面績效關係圖與不同條件對降溫速率影響,作為評估依據。
    本研究分為現地試驗與實驗室試驗兩部份,現地試驗包含降溫觀測及環境條件記錄,實驗室試驗則進行不同溫度下材料工程性質試驗,找出中斷溫度與允許開放交通最高溫度。利用紀錄儀紀錄鋪面在不同孔隙率、鋪面厚度、環境溫度的鋪面降溫曲線,探討各因素對於鋪面降溫速率之影響,並建立鋪面降溫模式。
    由實驗室試驗發現,鋪面溫度低於50℃時,間接張力值大幅增加,鋪面溫度50℃間接張力強度為80℃的2.7倍。孔隙率20%者降溫至中斷溫度所需時間為10%者的47%。鋪面厚度大於5cm小於10cm者,鋪築厚度每增加1cm平均有效滾壓時間增加13分鐘,平均允開放交通時間增加27分鐘。
    由現地試驗發現,即使鋪面表面溫度已經降溫至50℃,在深度為2.5cm處溫度仍有62℃,因此若貿然開放交通將會導致鋪面形成車轍破壞。

    Pavement cooling rate could be affected by many factors, such as mixture type, gradation, ambient temperature, layer thickness, base temperature and pavement construction. In an effort to provide adequate compaction and to prevent the damage due to open traffic, factors that affect the cooling rate of the mixture were studied.

    Field and laboratory tests were conducted. In field, thermocouples were installed in paving lane to measure temperature change under different depths. The environment conditions were recorded. In lab, specimens were made using the same mix as constructed in field testing sites. Marshall stability, indirect tensile strength and resilient modulus of the specimens were obtained under different temperatures. Cessation temperature and the maximum temperature to open traffic were determined. Effects of air voids, thickness of specimen and ambient temperature on cooling rate were discussed. Based on the temperature data, a pavement cooling model was developed.

    It is found that indirect tensile strength at 50C is 270% higher than that at 80C. The time required for the mix of 20% air voids to cool to 80C cessation temperature is 53% shorten than that for the mix of 10% air voids. If layer thickness is between 5 cm and 10 cm, time available for compaction and to open traffic increases 13 minutes and 27 minutes, respectively for one-centimeter increase in layer thickness. The results of the field tests indicate that even if pavement surface temperature is at 50C, the pavement temperature in the depth of 2.5 cm remains 62C. This suggests that pavement could be susceptible to rutting or shoving for open traffic with surface temperature at 50C.

    目錄 表目錄 圖目錄 第一章緒論 1.1 前言 1-1 1.2 研究動機 1-3 1.3 研究目的 1-4 1.4 研究範圍 1-4 第二章文獻回顧 2.1 瀝青混合物壓實度 2-1 2.2 壓實度對鋪面的影響 2-2 2.3 影響壓實度的因素 2-3 2.4 溫度對瀝青混合物的影響 2-6 2.5 影響鋪面降溫速率之因素 2-8 第三章研究計畫 3.1 研究流程 3-2 3.2 現地試驗驗   3-5 3.3.1 鋪面表面降溫量測 3-5 3.2.2 鋪面表面全深度降溫量測 3-6 3.3 實驗室實驗   3-9 3.3.1 迴轉圈數與孔隙率關係之求取 3-9 3.3.2 中斷溫度求取 3-10 3.3.3 溫度紀錄儀器與量測方法 3-12 3.3.4 鋪面厚度對於降溫時間之影響 3-14 3.3.5 空氣孔隙率對於降溫之影響 3-16 3.3.6 旋轉壓實儀 3-17 3.3.7 開放交通溫度對工程性質之影響 3-18 3.3.8 實驗室灑水模擬現地降溫 3-23 第四章試驗結果與討論 實驗室試驗 4.1 迴旋圈數與空氣孔隙率關係 4-1 4.2 中斷溫度求取 4-3 4.3 未達允許開放交通溫度,開放交通對鋪面績效影響 4-7 4.3.1 穩定值試驗 4-7 4.3.2 間接張力強度試驗 4-8 4.3.3 回彈模數試驗 4-10 4.4 孔隙率對於鋪面降溫之影響 4-12 4.4.1密級配試體孔隙率6%、7%、8%、10%之比較 4-13 4.4.2密級配試體孔隙率10%與多孔性瀝青混凝土鋪面孔 隙率15%、20%之比較 4-28 4.5 鋪面厚度對於鋪面降溫之影響 4-41 4.6 環境溫度對於鋪面降溫之影響 4-49 4.7 現地降溫量測 4-54 4.8 實驗室灑水模擬現地降溫 4-60 4.9 降溫模式建立 4-65 第五章 結論與建議 5.1 結論 5-1 5.2 建議 5-2 參考文獻 附錄 附錄A 級配表 附-1 附錄B 瀝青黏滯度數據 附-3 附錄C 馬歇爾穩定值、間接張力值、回彈模數值資料 附-5 附錄D 孔隙率6%、7%、8%、10%深度2.5cm及5.0cm 之三次多項式切線圖 附-8 附錄E 孔隙率7%、8%、10%試體溫度梯度變化 附-9 附錄F 孔隙率10%、15%、20%深度為2.5cm及5.0cm 溫度曲線與降溫梯度曲線圖 附-11 附錄G 孔隙率10%、15%、20%、深度2.5cm及5.0cm 之三次多項式切線圖 附-17 附錄H 鋪面厚度5cm、10cm、15cm環境溫度25℃之降溫 曲線圖 附-18 附錄I 鋪面厚度5cm、10cm、15cm在環境溫度16℃24℃25℃ 環境溫度下之降溫曲線圖 附-20

    王鎮雄、朱朝煌、李世榮、劉傳仁、蔡豐欽 (1996) 熱傳遞學,高立圖書有限公司,台北。

    王正偉(1999)路面加鋪工程開放交通時機之研究,中原大學碩士論
    文,桃園。

    宋寵發、凌建明、朱方海(2007) 「排水性瀝青路面降溫性與效果分析」,上海公路,No.1,第18-20頁及27頁。

    林廣台、李世榮 (1983) 熱傳遞,高立圖書有限公司,台北。

    交通部公路總局 (2005) 施工說明書技術規定,交通部公路總局,台灣。

    翁國豪 (1996)新鋪瀝青混凝土面層加速冷卻對於抗車撤能力之影響研究,國立成功大學土木工程研究所碩士論文,台南。

    American Association of State Highway and Transportation
    Officials (1998) ‘‘Practice for Short and Long Term Aging of Hot Mix Asphalt.’’ AASHTO Provisional Standard Designation PP2-96, Washington, D.C.

    Bahia, H. U. (2000) ”Recommendations for Mixing and Compaction Temperatures of Modified Binders.’’ Draft Topical Rep. for NCHRP Study No. 9-10, National Cooperative Highway Research Program, Washington, D.C.

    Brown, E. R. (1990) ”Density of Asphalt Concrete - How Much is Needed,”National Center for Asphalt Technology Report No. 90-3, TRB, Washington, D.C.

    Brown, E. R., Hainin, M. R., Cooley, A., and Hurley, G., (2004). Relationship of Air Voids, LiftThickness, and Permeability in Hot Mix Asphalt Pavements, NCHRP Report 531, TRB, National Research Council, Washington, D.C.

    Dempsey, B. J., and Thompson, M. R. (1970). "A Heat-Transfer Model for Evaluating Frost Action and
    Temperature-Related Effects in Multilayered Pavement
    Systems." Highway Research Record 342, HRB, National
    Research Council, Washington, D.C., 39–56.

    Gudimettla, J. M., Cooley, L. A., Jr. and Brown, E. R., (2003). Workability of Hot Mix Asphalt,National Center for Asphalt Technology Report 03-03, National Center for Asphalt Technology,Auburn University, AL, April.

    Highter, W.H., and Wall, D.j., (1984) “Thermal Properties of Some Asphaltic Concrete Mixes,” Transportation Research Record, n 968, pp.38-45.

    Hurley, G.C., Prowell, B.D., Cooley., L.A., (2004) “Evaluation of Non-Nuclear Density Measurement Devices for Determination of In-place Pavement Density,” 83rd Annual Meeting of the Transportation Research Board, Washington, D.C. (on CD-ROM).

    Jordan, P.J., and Thomas, M.E., (1976). Prediction of Cooling Curves for Hot-Mix Paveing Materials by a Computer Program, Construction amd Maintenance Division Highways Department Transport and Road Research Laboratory Crowthorne,Berkshier.

    Kandhal, P.S. and Koehler, W.C., (1984) “Pennsylvania’s
    Experience in the Compaction ofAsphalt Pavements.” Placement and Compaction of Asphalt Mixtures STP829, F.T. Wagner, Ed.,ASTM, Philadelphia, PA., pp. 93-106.

    Kennedy, T.W., Robert, F.L., and McGennis, R.B., (1984) “Effects of Compaction Temperatureand Effort on the Engineering Properties of Asphalt Concrete Mixtures.” Placement and Compaction of Asphalt Mixtures STP829, F.T. Wagner, Ed., ASTM, Philadelphia, PA., pp.48-66.

    Leech, D., and Powell, W.D., (1974). Level of Compaction of Dense Coated Macadam Achieved During Pavement Construction, Construction amd Maintenance Division Highways Department Transport and Road Research Laboratory Crowthorne,Berkshier.

    Lu, Y., and Wright, P.J.,(2000) “Temperatuer Related
    Visci-Elastopastic Properties of Asphalt Mixtures,”Journal of Transportation Engineering, Vol. 126, pp.58-65.

    Mrawira, M.D., Luca, J., (2002). ”Thermal Properties and Transient Temperature Response of Full-Depth Asphalt Pavements,” Transportation Research Reocrd , n 1809, pp.160-171.

    Mrawira, M.D., Luca, J., (2006). ”Effect of aggregate type,gradation,and compaction level on thermal properties of
    hot-mix asphalt,” Canada Journal of Civil Engineering, Vol.33, pp.1410-1417.

    Romero, P., (2002). ”Evaluation of Non-Nuclear Gauges to
    Measure Density of Hot-Mix Asphalt Pavements, ” Pooled Fund Study, FHWA Turner-Fairbank Highway Research Center, The University of Utah, U.S.A.

    Romero, P., and Kuhnow, F. (2003). “Evaluation of New Nonnuclear Pavement Density Gauges with Data from Field Projects.” Transportation Research Record 1813, TRB, National Research Council, Washington, D.C, pp.47-54

    Scherocman, J.A., and Martenson, E.D., (1984). “Placement of Asphalt Concrete Mixtures.”Placement and Compaction of Asphalt Mixtures STP829, F.T. Wagner, Ed., ASTM, Philadelphia,PA., pp. 3-27.

    Shang, J.Q., Umana, F.M., and Rossiter, J.R., (1999) Measuerment of Comples Permittivity of Asphalt Pavement Materials,” Journal of Transportation Engineering, Vol. 125, pp.347-356.

    Ulmgren, N.,(2000).”Temperature Scanner – An Instrument to Achieve a Homogenous Asphalt Pavement.” 2nd urasphalt & Eurobitume Congress Barcelona Proc.0052.uk.

    US Army Corps of Engineers. (2000). Hot-Mix Asphalt Pavement, AC 150/5370-14A.

    Willoughby, K.A., Mahoney, J.P., Pierce, L.M., Uhlmeyer, J.S., and Anderson, K.W.(2000) “Construction-Related Asphalt Concrete Pavement Temperature and Density Differentials,” Transportation Research Record, n 1813, pp.68-76.

    下載圖示 校內:2010-07-24公開
    校外:2012-07-24公開
    QR CODE