簡易檢索 / 詳目顯示

研究生: 潘建銘
Pan, Jian-Ming
論文名稱: 利用靜態同步補償器於混合離岸式潮汐場之穩定度改善研究
Stability Improvement of a Hybrid Offshore Tidal Farm Using a STATCOM
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 163
中文關鍵詞: 鼠籠式轉子感應發電機永磁式同步發電機潮汐場靜態同步補償器阻尼控制器穩定度
外文關鍵詞: squirrel-cage induction generator, permanent-magnet synchronous generator, tidal farm, static synchronous compensator, damping controller, stability
相關次數: 點閱:85下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以水平軸式潮汐渦輪機分別驅動鼠籠式轉子感應發電機與永磁式同步發電機以做為無壩體式潮汐發電系統。本論文並提出兩種研究架構系統;系統架構一為單部鼠籠式轉子感應發電機分別做市電併聯及獨立供電;系統架構二為整合鼠籠式轉子感應發電機與永磁式同步發電機之離岸潮汐場經由傳輸線連接至電網,並採用靜態同步補償器改善系統穩定度。本論文於三相平衡系統條件下,採用交直軸等效電路模型以建立整體系統之數學模型,並利用留數法設計超前-落後型式之阻尼控制器,以比較其對系統穩定度之改善特性。本論文於穩態方面,分析潮汐場在不同工作條件下,系統之運作特性與頻域特徵值;在動態及暫態方面,完成潮汐流速變動、轉矩干擾及三相短路等模擬結果。由模擬結果分析得知,加入靜態同步補償器及阻尼控制器於所研究之系統,可有效改善系統遭受干擾時之穩定度特性。

    This thesis employs a squirrel-cage induction generator (SCIG) and a permanent-magnet synchronous generator (PMSG) respectively driven by a horizontal-axis tidal turbine to constitute a tidal power generation system. The thesis presents the stability analysis of two system configurations. System configuration 1 is an SCIG-based tidal turbine generation system connected to a power grid and fed to an isolated load, respectively. System configuration 2 is a hybrid SCIG-based and PMSG-based offshore tidal farm fed to a power grid using a static synchronous compensator (STATCOM). The q-d axis equivalent-circuit model is derived to establish the complete system model under three-phase balanced conditions. A damping controller of lead-lag type of the proposed STATCOM is designed by using residue method, and the performance of the studied system with and without the designed controller is also compared. Steady-state operating characteristics and eigenvalue variations of the studied system under different operating conditions are performed. Dynamic and transient simulations of the studied system subjected to a tidal-speed disturbance, a torque disturbance, and a three-phase short circuit fault at the power system are also carried out. It can be concluded from the simulation results that the proposed STATCOM joined with the designed controller can effectively improve the stability of the studied system.

    摘要 I Extended Abstract II 誌謝 VII 目錄 VIII 表目錄 XII 圖目錄 XIV 符號說明 XIX 第一章 緒論 1 1-1 研究背景與動機 1 1-2 相關文獻回顧 5 1-3 本論文之貢獻 11 1-4 研究內容概述 12 第二章 系統數學模型 14 2-1 前言 14 2-2 系統架構 15 2-3 潮汐流速之數學模型 18 2-4 潮汐渦輪機之數學模型 21 2-5 旋角控制器之數學模型 23 2-6 潮汐渦輪機與發電機間轉矩之數學模型 25 2-7 鼠籠式轉子感應發電機之數學模型 26 2-8 永磁式同步發電機之數學模型 29 2-9 靜態同步補償器之數學模型 35 第三章 靜態同步補償器之阻尼控制器設計 39 3-1 前言 39 3-2 回授訊號之選擇 39 3-3 靜態同步補償器之控制系統模型 42 3-4 留數法設計阻尼控制器參數 43 3-5 特徵值靈敏度分析 48 第四章 系統之穩態分析 54 4-1 前言 54 4-2 系統架構一之穩態分析 55 4-2-1 潮汐流速變動時,市電併聯型之系統穩態分析 55 4-2-2 電網電壓變動時,市電併聯型之系統穩態分析 62 4-2-3 轉子轉速變動時,獨立供電型之系統穩態分析 69 4-2-4 負載變動時,獨立供電型之系統穩態分析 76 4-2-5 自激電容值變動時,獨立供電型之系統穩態分析 82 4-3 系統架構二之穩態分析 89 4-3-1 潮汐流速變動時,潮汐場結合靜態同步補償器之系統穩態分析 89 4-3-2 電網電壓變動時,潮汐場結合靜態同步補償器之系統穩態分析105 第五章 系統之動態與暫態分析 115 5-1 前言 115 5-2 系統架構一之動態與暫態分析 116 5-2-1 潮汐流速變動時,市電併聯型之系統動態分析 116 5-2-2 潮汐渦輪機遭受轉矩干擾時,市電併聯型之系統動態分析 119 5-2-3 電網端發生三相短路故障時,市電併聯型之系統暫態分析 122 5-2-4 負載變動時,獨立供電型之系統動態分析 125 5-2-5 自激電容值切換時,獨立供電型之系統動態分析 127 5-3 系統架構二之動態與暫態分析 129 5-3-1 潮汐場於同時間發生潮汐流速變動時,系統之動態分析 129 5-3-2 潮汐場於不同時間發生潮汐流速變動時,系統之動態分析 134 5-3-3 潮汐場發生轉矩干擾時,系統之動態分析 139 5-3-4 電網端發生三相短路故障時,系統之暫態分析 144 第六章 結論與未來研究方向 151 6-1 結論 151 6-2 未來研究方向 153 參考文獻 155 附錄 161 作者簡介 162

    [1]經濟部能源局。http://www.moeaboe.gov.tw/, retrieved date: Jun. 30, 2015.
    [2]再生能源網。http://www.re.org.tw/, retrieved date: Jun. 30, 2015.
    [3]MEYGEN, http://www.moeaboe.gov.tw/, retrieved date: Jul. 2, 2015.
    [4]F. O. Rourke, F. Boyle, and A. Reynolds, “Tidal energy update 2009,” Applied Energy, vol. 87, no. 2, pp. 398-409, Feb. 2010.
    [5]E. Denny, “The economics of tidal energy,” Energy Policy, vol. 37, no. 5, pp. 1914-1924, May 2009.
    [6]Y. Jiang, F.-R. Meng, and Y.-H. Luo, “Variable speed constant frequency tidal current energy generation and control strategy for maximum power point tracking and grid connection,” in Proc. International Conference on Sustainable Power Generation and Supply, Nanjing, China, Apr. 6-7, 2009, pp. 1-6.
    [7]A. G. Bryans, B. Fox, P. A. Crossley, and M. O’Malley, “Impact of tidal generation on power system operation in Ireland,” IEEE Trans. Power Systems, vol. 20, no. 4, pp. 2034-2040, Nov. 2005.
    [8]K. Yuen, K. Thomas, M. Grabbe, P. Deglaire, M. Bouquerel, D. Osterberg, and M. Leijon, “Matching a permanent magnet synchronous generator to a fixed pitch vertical axis turbine for marine current energy conversion,” IEEE Oceanic Engineering, vol. 34, no. 1, pp. 24-31, Jan. 2009.
    [9]M. J. Khan, G. Bhuyan, M. T. Iqbal, and J. E. Quaicoe “Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review,” Applied Energy, vol. 86, no. 10, pp. 1823-1835, Oct. 2009.
    [10]M. L. Rahman and Y. Shirai, “Hybrid offshore-wind and tidal turbine (HOTT) energy conversion I (6-pulse GTO rectifier and inverter),” in Proc. 2008 IEEE International Sustainable Energy Technologies, Singapore, Nov. 24-27, 2008, pp. 650-655.
    [11]R. Bharanikumar, V. Kandasamy, M. P. Maheswari, and A. N. Kumar, “Steady state analysis of wind turbine driven PM generator with power converters,” in Proc. 2008 International Emerging Trends in Engineering and Technology Conference, Nagpur, Maharashtra, Jul. 16-18, 2008, pp. 922-926.
    [12]J. Khan, G. Bhuyan, A. Moshref, K. Morison, J. H. Pease, and J. Gurney, “Ocean wave and tidal conversion technologies and their interaction with electrical networks,” in Proc. 2008 IEEE Power and Energy Society General Meeting, Pittsburgh, PA, USA, Jul. 20-24, 2008, pp. 1-8.
    [13]S. E. B. Elghali, R. Balme, K. L. Saux, M. E. H. Benbouzid, J. F. Charpentier, and F. Hauville, “A simulation model for the evaluation of the electrical power potential harnessed by a marine current turbine,” IEEE Ocean Engineering, vol. 32, no. 4, pp. 786-797, Oct. 2007.
    [14]L. Ye, J. L. Barbara, and M. C. Sander, “Modeling tidal turbine farm with vertical axis tidal current turbines,” in Proc. 2007 IEEE International Systems, Man and Cybernetics Conference, Montreal, Canada, Oct. 7-10, 2007, pp. 697-702.
    [15]S. Sheth and M. Shahidehpour, “Tidal energy in electric power systems,” in Proc. 2005 IEEE Power Engineering Society General Meeting, San Francisco, CA, USA, Jun. 12-16, 2005, pp. 630-635.
    [16]L. Wang and C.-H. Lee, “A novel analysis on the performance of an isolated self-excited induction generator,” IEEE Trans. Energy Conversion, vol. 12, no. 2, pp. 109-117, Jun. 1997.
    [17]L. Wang and C.-H. Lee, “A novel analysis of parallel operated self-excited induction generators,” IEEE Trans. Energy Conversion, vol. 13, no. 2, pp. 117-123, Jun. 1998.
    [18]P.-H. Huang, M. S. El Moursi, W.-D. Xiao, and J. L. Kirtley, “Fault ride-through configuration and transient management scheme for self-excited induction generator-based wind turbine,” IEEE Trans. Sustainable Energy, vol. 5, no. 1, pp. 148-159, Jan. 2014.
    [19]J. G. Slootweg and W. L. Kling, “Aggregated modelling of wind parks in power system dynamics simulations,” in Proc. 2003 IEEE Bologna PowerTech Conference, Bologna, Italy, Jun. 23-26, 2003, pp. 1-6.
    [20]K. Wang and M. L. Crow, “Power system voltage regulation via STATCOM internal nonlinear control,” IEEE Trans. Power Systems, vol. 26, no. 3, pp. 1252-1262, Aug. 2011.
    [21]M. Molina, J. A. Suul, and T. Undeland, “Low voltage ride through of wind farms with cage generators: STATCOM versus SVC,” IEEE Trans. Power Electronics, vol. 23, no. 3, pp. 1104-1117, May 2008.
    [22]L. Wang and C.-T. Hsiung, “Dynamic stability improvement of an integrated grid-connected offshore wind farm and marine-current farm using a STATCOM,” IEEE Trans. Power Systems, vol. 26, no. 2, pp. 690-698, May 2011.
    [23]A. M. A. Hamdan and A. M. Elabdalla, “Geometric measures of modal controllability and observability of power system models,” Electric Power Systems Research, vol. 15, no. 2, pp. 147-155, Oct. 1988.
    [24]A. Heniche and I. Kamwa, “Assessment of two methods to select wide-area signals for power system damping control,” IEEE Trans. Power Systems, vol. 23, no. 2, pp. 572-581, May 2008.
    [25]A. M. Almutairi and J. V. Milanovic, “Optimal input and output signal selection for wide-area controllers,” in Proc. 2009 IEEE Bucharest PowerTech Conference, Bucharest, Romania, Jun. 28-Jul. 2, 2009, pp. 1-6.
    [26]F. Xiao, Y.-Z. Sun, F. Yang, and L. Cheng, “Inter-area damping controller design based on mode controllability and observability,” in Proc. IEEE International Power Engineering Conference, Singapore, Dec. 3-6, 2007, pp. 95-99.
    [27]N. Yang, Q. Liu, and J. D. Mccalley, “TCSC controller design for damping interarea oscillations,” IEEE Trans. Power Systems, vol. 13, no. 4, pp. 1304-1310, Nov. 1998.
    [28]R. Sadikovic, P. Korba, and G. Andersson, “Application of FACTS devices for damping of power system oscillations,” in Proc. 2005 IEEE Russia PowerTech Conference, Petersburg, Russia, Jun. 27-30, 2005, pp. 1-6.
    [29]G. Cakir and G. Radman, “Placement and performance analysis of STATCOM and SVC for damping oscillation,” in Proc. 2013 International Conference on Electric Power and Energy Conversion Systems (EPECS), Istanbul, Turkey, Oct. 2-4, 2013, pp. 1-5.
    [30]P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery and Drive Systems, 2nd ed., New York: John Wiley & Sons, 2002.
    [31]P. M. Anderson and A. A. Fouad, Power System Control and Stability, Iowa: The Iowa State University Press, Ames, 1977.
    [32]P. Kundur, N. J. Balu, and M. G. Lauby, Power System Stability and Control, New York: McGraw-Hill, 1994.
    [33]H. Saadat, Power System Analysis, 2nd ed., New York: McGraw-Hill, 2002.
    [34]B. Wu, Y. Lang, N. Zargari, and S. Kouro, Power Conversion and Control of Wind Energy Systems, New York: John Wiley & Sons, 2011.
    [35]S.-Y. Lu, “Hevajra teaches essentials of secret practice and exploitation of energy from earth, water, fire, and wind,” Living Buddha Lian-sheng Sheng-yen Lu Dharma Talk on September 7th, 2008 at True Buddha Rainbow Temple, WA, USA. (http://tbsn.org/chinese3/news.php?cid=29&csid=42&id=1129, retrieved date: May 7, 2015).
    [36]鄧瑞永,獨立感應發電機於不平衡負載之動態研究,國立成功大學電機工程學系碩士論文,民國八十七年五月。
    [37]黎昭男,飛輪儲能系統於整合離岸式風場與潮流場之動態穩定度改善研究,國立成功大學電機工程學系碩士論文,民國九十九年七月。
    [38]陳贊家,波浪能發電系統之特性分析,國立成功大學電機工程學系碩士論文,民國九十七年七月。
    [39]張庭仁,應用彈性交流輸電系統於增強離岸式風場連接至電力系統之穩定度,國立成功大學電機工程學系博士論文,民國一百零二年五月。

    無法下載圖示 校內:2025-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE