| 研究生: |
簡彰億 Jian, Jhang-Yi |
|---|---|
| 論文名稱: |
以DSP為基礎於複雜背景中之視覺引導全向移動機器人之研製 Development of a DSP-Based Vision-Guided Omnidirectional Mobile Robot in Complex Background |
| 指導教授: |
何明字
Ho, Ming-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 全向移動機器人 、視覺伺服 、物體追蹤 |
| 外文關鍵詞: | omnidirectional mobile robot, visual servo, object tracking |
| 相關次數: | 點閱:99 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在設計並實現視覺伺服系統,以視覺導引全向移動機器人達成物體追蹤。系統中,利用兩個影像感測器模擬人類雙眼,來感測出目標物在空間中的位置,並控制全向輪車移動至目標物正下方,建構出即時影像追蹤視覺系統並結合全向移動機器人以達成視覺引導的目的。整個系統主要分成全向移動機器人、影像處理模組、兩顆影像感測器和追蹤控制器。其中,影像感測器是採用CMOS影像感測器;影像處理模組部份與追蹤控制器部份是分別使用不同晶片的數位訊號處理器,以雙核心的架構來完成。本論文採用連通物件標記法(connected component labeling)與面積濾波(size filter)來擷取目標物體,然而這兩種方法容易受光線變化的影響而產生誤差,為了解決這個問題,吾人使用形態學(morphological)來改善光線入侵的影響,並利用狀態回授線性化結合PID控制器來完成視覺引導全向移動機器人的追蹤控制,經過分析與實驗後,本論文證實了視覺引導的可行性。
The objective of this thesis is to design and realize a visual servo system with complex background. This system is then used to guide an omnidirectional mobile robot to achieve the object tracking. The system uses two image sensors to sense the position of the target in the space, and guides the omnidirectional mobile robot to move to the target. The overall system consists of an omnidirectional mobile robot, image processing modules, two image sensors and tracking controller. The CMOS image sensors are used to acquire the image data. The image processing module and tracking controller are implemented on two different digital signal processors. The connected component labeling method and the size filter are used to differentiate the target object from the complex background, but these two methods are very sensitive to the light changing. In order to solve this problem, we use the morphological methods to improve the ability against the light effects. The state feedback linearization with the PID controller is used to control the vision-guided omnidirectional mobile robot. The system is developed and demonstrated its effectiveness through simulation and experimental results.
[1] 翁義清,「全向移動機器人之路徑追蹤控制」,國立成功大學工程科學系碩士論文,民國九十六年。
[2] S. Tsugawa, “Vision-Based Vehicles in Japan: Machine Vision Systems and Driving Control Systems,” IEEE Transactions on Industrial Electronics, Vol. 41, No. 4, pp. 398-405, 1994.
[3] M. Bertozzi and A. Broggi, “Vision-Based Vehicle Guidance,” IEEE Computer Society, Vol. 30, No. 7, pp. 49-55, 1997.
[4] B. E. Bishop and M. W. Spong, “Vision-Based Control of an Air Hockey Playing Robot,” IEEE Control Systems Magazine, Vol. 19, No. 3, pp. 23-32, 1999.
[5] J. Kofman, W. Xianghai, T. J. Luu, and S. Verma, “Teleoperation of a Robot Manipulator Using a Vision-Based Human-Robot Interface,” IEEE Transactions on Industrial Electronics, Vol. 52, No. 5, pp. 1206-1219, 2005.
[6] H. Jie, J. Kebin, and L. Zhuoyi, “A Fast and Robust Algorithm of Detection and Segmentation for Moving Object,” 2009 Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 718-721, 2009.
[7] C. Kim and J. N. Hwang, “Object-Based Video Abstraction for Video Surveillance Systems,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 12, No. 12, pp. 1128-1138, 2002.
[8] G. L. Foresti and C. S. Regazzoni, “A Real-Time Model-Based Method for 3-D Object Orientation Estimation in Outdoor Scenes,” IEEE Signal Processing Letters, Vol. 4, No. 9, pp. 248-251, 1997.
[9] G. D. Hager, W. C. Chang, and A. S. Morse, “Robot Feedback Control Based on Stereo Vision: Towards Calibration-free Hand-eye Coordination,” Proceedings of IEEE International Conference on Robotics and Automation, Vol. 4, pp. 2850-2856, 1994.
[10] K. P. Horn, and B. G.. Schunck, “Determining Optical Flow,” Artificial Intelligence, Vol. 17, pp. 185-203, 1981.
[11] D. S. Jang, G. Y. Kim, and H. I. Choi, “Model-based Tracking of Moving Object,” Pattern Recognition, Vol. 30, No 6, pp. 999-1008, 1997.
[12] 林家民,「以視覺伺服為基礎之物體追蹤系統之設計與實現」,國立成功大學工程科學系碩士論文,民國九十五年。
[13] 徐嘉明,「以視覺伺服為基礎之全向移動機器人追蹤控制」,國立成功大學工程科學系碩士論文,民國九十六年。
[14] 朱立銘,「以視覺伺服為基礎之球與板系統追蹤平衡控制」,國立成功大學工程科學系碩士論文,民國九十八年。
[15] 蔡任右,「以視覺為基礎之複雜背景下物體追蹤控制系統之設計與實現」,國立成功大學工程科學系碩士論文,民國九十八年。
[16] 顏忠逸,「即時物體追蹤之立體視覺導引全向移動機器人之研製」,國立成功大學工程科學系碩士論文,民國九十八年。
[17] 缪紹綱,「數位影像處理」,普林斯頓國際有限公司,民國九十二年。
[18] 缪紹綱,「數位影像處理-運用MATLAB」,東華書局,國九十四年。
[19] R. M. Haralick and L. G. Shapiro, Computer and Robot Vision, Addison Wesley, Massachusetts, 1993.
[20] O. Faugeras, Three-Dimensional Computer Vision: A Geometric Viewpoint, Massachusetts Institute of Technology, Cambridge, 1993.
[21] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry, An Invitation to 3-D Vision: From Images to Geometric Models, Springer, NY, 2004.
[22] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University, Cambridge, 2003.
[23] S. H. Friedberg, A. J. Insel, and L. E. Spence, Linear Algebra, Pearson Education, NJ, 2003.
[24] N. Goncalves and H. Araujo, “Estimation of 3D Motion from Stereo Images-Uncertainty Analysis and Experimental Results,” 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 1, No. 10, pp. 7-12, 2002.
[25] 蕭天賜,「以數位訊號處理器為基礎之多功能控制平台的研製」,國立成功大學工程科學系碩士論文,民國九十五年。
[26] PAS109BB QQVGA Mono CMOS Image Sensor, PixArt Imaging Inc., 2002.
[27] TMS320C64x+ DSP Megamodule Reference Guide, Texas Instruments Inc., 2008.
[28] TMS320DM643x DMP Enhanced Direct Memory Access Controller User’s Guide, Texas Instruments Inc., 2008.
[29] TMS320DM643x DMP Inter-Integrated Circuit User’s Guide, Texas Instruments Inc., 2008.
[30] The Bus Specification (version 2.1), Philips Semiconductors Inc., 2000.
[31] Cyclone Device Handbook, ALTERA Inc., 2002.
[32] TMS320F281X Digital Signal Processor Data Manual, Texas Instruments Inc., 2001.