簡易檢索 / 詳目顯示

研究生: 吳昀芳
Wu, Yun-Fang
論文名稱: 應用於白光發光二極體之紅色鈦酸鈣與綠色鈣鈧矽氧螢光粉研究
Study of CaTiO3:Eu3+ Red and Ca3Sc2Si3O12:Ce3+ Green Phosphors for White Light-Emitting Diode Applications
指導教授: 陳引幹
Chen, In-Gann
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 130
中文關鍵詞: 螢光粉鈦酸鈣鈣鈧矽氧效率
外文關鍵詞: phosphor, CaTiO3, Ca3Sc2Si3O12, Europium, Cerium, quantum efficiency
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著綠色能源材料逐漸受重視,白光發光二極體在日常生活中的應用越來越普遍,故開發可搭配商用晶片之高發光效率與高演色性的螢光材料是目前發展白光發光二極體的重要議題之一。本研究將分為三個部分:第一部分利用固態反應法來製備CaTiO3摻雜Eu3+之紅色螢光粉,並共摻雜Li+以探討摻雜對發光行為與色純度提升之影響。根據研究結果發現Li+的添加可以增加Eu3+在CaTiO3中的有效固溶度和減少鈣空缺,以提升多重聲子過程的遷移速率以改善發光性質及造成衰減時間變短,使發光強度明顯提升1.6倍。此外,隨著Eu3+和Li+的增加,Ca1-2xEuxLixTiO3紅色螢光粉之色度座標會比商用Y2O2S:Eu紅色螢光粉更接近理想紅光(0.68, 0.32),最佳摻雜樣品可提高色純度至92.1%。這些結果顯示擁有高色純度的Ca1-2xEuxLixTiO3 紅色螢光粉具有可信賴的應用性,可作為商用紫外光晶片與藍光晶片搭配的固態光源之白光混光應用材料。
    第二部分為以固態反應法製備可與商用450nm藍光晶片搭配之Ca3Sc2Si3O12:Ce3+綠色螢光粉以混成白光,並共摻雜不同濃度Al3+以期提升Ca3Sc2Si3O12:Ce3+綠色螢光粉之發光表現。由本研究結果可知,摻雜Al3+能有效抑制雜相Sc2O3與CeO2的形成,提升樣品之純度、結晶性與發光強度,同時增加Ce3+能階的晶格場分裂,導致光致發光光譜往紅光波長位移。並利用高強度同步輻射光源之XANES分析可探討元素之電子價態結構,證明摻雜之Al3+能取代在主體中Sc3+的位置,並可清楚觀察到Ce3+與Ce4+的變化量以及Ca原子周圍環境對稱性的改變。
    第三部分為以熱碳還原法取代固態反應法製備摻雜Al3+之Ca3Sc2Si3O12:Ce3+綠色螢光粉。由結果顯示,此方法可以有效的減少雜相的殘留,且提高Al3+在Ca3Sc2Si3O12:Ce3+綠色螢光粉體中的最佳摻雜濃度(x),相較於固態反應法,Al3+的最佳摻雜量可由x=0.05增加至x=0.15, 其量子效率則可從46.8% 提高至51.6%,且熱碳還原法能有效提升Ca3Sc2Si3O12:Ce3+之發光強度及量子效率,最佳摻雜之量子效率更可由46.8%提升至51.6%,顯示熱碳還原法相較於固態反應法更能提升Ca3Sc2Si3O12:Ce3+綠色螢光粉的發光表現,使其更具有實際應用之潛力。

    High color purity red phosphors of Ca1-3/2xEuxTiO3 and Ca1-2xEuxLixTiO3 (0 < x ≤ 0.3) are synthesized via a solid-state reaction method. The red emission photoluminescence intensity and color purity are enhanced by the incorporation of Li+ into CaTiO3:Eu3+. Li+ doping increases the emission probability from 5D0 state,increase photoluminescence intensity by 1.6 times,increases color purity to 92.1%,and shortens the decay time. With increasing Eu3+ and Li+ content,the color coordinates approach the ideal red chromaticity values,coming closer than commercial Y2O2S:Eu3+ red phosphor.
    Ca3Sc2Si3O12:Ce3+ (CSS:Ce) green phosphors used for white light-emitting diodes (LEDs) are synthesized and co-doped with Al3+ via a solid-state reaction method. The incorporation of Al3+ into CSS:Ce can inhibit the formation of the impurity phases Sc2O3 and CeO2,improve crystallinity,and enhance the photoluminescence intensity as well as quantum efficiency. The substitution of Sc3+ with Al3+ increased the crystal field splitting of Ce3+ and resulted in the red shift of photoluminescence. The results show that Ca3Sc2-xAlxSi3O12:Ce3+ has high quantum efficiency,making it a promising green phosphor that can be collocated with a commercial 450 nm blue LED and a red phosphor for solid-state lighting applications.
    Al3+ co-doped Ca2.955Sc2Si3O12:Ce3+ (CSAS:Ce) green phosphors were also systematically investigated using X-ray absorption near-edge spectroscopy (XANES) to understand the influence of Al3+ incorporation on photoluminescence behavior. XANES results indicate that Al3+ occupies the Sc3+ sites and stabilizes the crystal structure of the host material. Furthermore,Al3+ can effectively inhibit the oxidization of Ce3+ to Ce4+,which enhances the photoluminescence of CSAS:Ce green phosphors.
    CSAS:Ce green phosphors are also synthesized by carbothermal reduction method. The structure analysis shows the doping suitable Al3+ content can inhibit residual impurity phases. Furthermore, Al3+-doping also can improve the optical properties. The optimal Al3+-doping content can upgrade from x=0.05 to x=0.15. The quantum efficiency can be enhanced from 46.8% to 51.6%. These results present that the carbothermal reduction method is better way to increase the optical performance of CSAS:Ce green phosphors, than the traditional solid-state reaction method.

    摘要 i Abstract iii 誌謝 v 第一章 緒論 1 1-1 前言 1 1-2螢光材料發展與現況 3 1-3研究動機與目的 3 第二章 理論基礎與文獻回顧 9 2-1 螢光材料簡介 9 2-1-1 螢光材料分類 9 2-1-2 激發源分類 11 2-2 發光原理與機制 12 2-2-1發光原理與過程 12 2-2-2發光(luminescence)、螢光(fluorescence)與磷光(phosphorescence) 13 2-2-3 組態座標圖(configuration coordination diagrams) 13 2-2-4電子-聲子交互作用(electron-phonon interaction) 14 2-2-5 史托克位移(Stoke shift) 15 2-2-6 能量轉移(energy migration) 16 2-2-7 非輻射躍遷(non-radiative transition) 17 2-2-8 光抑制效應 18 2-3 影響發光效率的因素 19 2-3-1 主體晶格(host) 19 2-3-2 毒劑現象(poisoning) 20 2-3-3 濃度淬滅(concentration quenching) 20 2-3-4 熱淬滅(thermal quenching) 21 2-4 固態材料中的光致發光 21 2-4-1 本質型發光(intrinsic luminescence) 21 2-4-2 外質型發光(extrinsic luminescence) 22 2-5 螢光材料的組成與選擇 24 2-6 色彩介紹 25 2-6-1 演色性(color rendering index, CRI) 25 2-6-2 色溫(color temperature) 25 2-6-3 色度座標(CIE chromaticity diagram) 26 2-7 發光光譜特性 27 2-7-1 主體共價效應 27 2-7-2主體結晶場效應 27 2-8 X光吸收近邊緣結構 (X-ray absorption near-edge structure,XANES) 28 第三章 實驗方法與步驟 44 3-1 實驗概述 44 3-2 起始原料 44 3-3 實驗方法 45 3-4 製程與分析設備 46 3-4-1 製程設備 46 3-4-2 分析設備 46 第四章 結果與討論 49 4-1固相反應法製備Ca1-3/2xEuxTiO3與Ca1-2xEuxLixTiO3紅色螢光粉 49 4-1-1 相鑑定 49 4-1-2 光致發光與量子效率 50 4-1-3 FTIR光譜與多重聲子過程 52 4-1-4 色純度 54 4-1-5 熱穩定性 55 4-2固相反應法製備Ca2.955Sc2-xAlxSi3O12:Ce3+綠色螢光粉 72 4-2-1 相鑑定 72 4-2-2 發光性質與量子效率 73 4-2-3 FTIR與拉曼散射之振動光譜 75 4-2-4 熱穩定性 77 4-2-5 電子結構 78 4-3熱碳還原法製備Ca2.955Sc2-xAlxSi3O12:Ce3+綠色螢光粉 101 4-3-1 相鑑定 101 4-3-2 FTIR與拉曼散射之振動光譜 102 4-3-3 發光性質與量子效率 103 4-3-4 熱穩定性 105 第五章 結論 116 參考文獻 119

    1. Y. Chen, S. Patel, Y. Ye, D. Shaw, and L. Guo, “Field emission from aligned high-density graphitic nanofibers,” Appl. Phys. Lett., 73 2119 (1998).
    2. Y. T. Nien, K. M. Chen, I. G. Chen, and T. Y. Lin, “Photoluminescence enhancement of Y3Al5O12:Ce nanoparticles using HMDS,” J. Am. Ceram. Soc., 91[11] 3599 (2008).
    3. X. Wang, C. Xu, H. Yamada, K. Nishikubo, and X. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater., 17[10] 1254 (2005).
    4. H. Takashima, K. Ueda, and M. Itoh, “Red photoluminescence in praseodymium-doped titanate perovskite films epitaxially grown by pulsed laser deposition,” Appl. Phys. Lett., 89 261915 (2006).
    5. T. Kyomen, R. Sakamoto, N. Sakamoto, S. Kunugi, and M. Itoh, “Photoluminescence properties of Pr-doped (Ca, Sr, Ba)TiO3,” Chem. Mater, 17[12] 3200 (2005).
    6. A. Vecht, D. Smith, S. Chadha, C. Gibbons, J. Koh, and D. Morton, “New electron excited light emitting materials,” J. Vac. Sci. Technol. B, 12 781 (1994).
    7. S. Cho, J. Yoo, andJ. Lee, “Synthesis and low voltage characteristics of CaTiO: Pr luminescent powders,” J. Electrochem. Soc., 143 L231 (1996).
    8. X. Zhang, J. Zhang, X. Zhang, L. Chen, Y. Luo, and X.-j. Wang, “Enhancement of the red emission in CaTiO3:Pr3+ by addition of rare earth oxides,” Chem. Phys. Lett., 434[4-6] 237 (2007).
    9. A. Purwanto, D. Hidayat, Y. Terashi, and K. Okuyama, “Synthesis of monophasic CaxBa(1−x)TiO3 nanoparticles with high Ca content (x > 23%) and their photoluminescence properties,” Chem. Mater., 20[24] 7440 (2008).
    10. G. Blasse and B. Grabmaier, “Luminescent materials,” Springer, Berlin, German, (1994).
    11. J. Wang, X. Jing, C. Yan, and J. Lin, “Ca1-2xEuxLixMoO4: A novel red phosphor for solid-state lighting based on a GaN LED,” J. Electrochem. Soc., 152[3] G186 (2005).
    12. R. J. Xie, N. Hirosaki, M. Mitomo, K. Takahashi, and K. Sakuma, “Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors,” Appl. Phys. Lett., 88[10] 101104 (2006).
    13. E. Cockayne and B. P. Burton, “Phonons and static dielectric constant in CaTiO3 from first principles,” Phys. Rw. B, 62[6] 3735 (2000).
    14. Y. Shimomura, T. Honma, M. Shigeiwa, T. Akai, K. Okamoto, and N. Kijima, “Photoluminescence and crystal structure of green-emitting Ca3Sc2Si3O12:Ce3+ phosphor for white light emitting diodes,” J. Electrochem. Soc., 154[1] J35 (2007).
    15. C. B. Samantaray, M. L. Nanda Goswami, D. Bhattacharya, S. K. Ray, and H. N. Acharya, “Photoluminescence properties of Eu3+-doped barium strontium titanate (Ba, Sr)TiO3 ceramics,” Mater. Lett., 58 [17–18] 2299 (2004).
    16. S. Yin, D. Chen, W. Tang, and Y. Peng, “Synthesis of CaTiO3: Pr persistent phosphors by a modified solid-state reaction,” Mater. Sci. Eng. B, 136 [2–3] 193 (2007).
    17. Z. Fu, B. K. Moon, H. K. Yang, and J. H. Jeong, “Synthesis, characterization, and luminescent properties of Pr3+-doped bulk and nanocrystalline BaTiO3 phosphors,” J. Phys. Chem. C, 112 [15] 5724 (2008).
    18. J. Fu, Q. Zhang, Y. Li, and H. Wang, “Preparation and photoluminescence characteristics of a new promising red NUV phosphor CaTiO3:Eu3+,” J. Alloys Comp., 485 [1–2] 418 (2009).
    19. Y. Shimomura, T. Kurushima, M. Shigeiwa, and N. Kijima, “Redshift of green photoluminescence of Ca3Sc2Si3O12:Ce3+ phosphor by charge compensatory additives,” J. Electrochem. Soc., 155 [2] J45 (2008).
    20. Y. Chen, K. Wai Cheah, and M. Gong, “Low thermal quenching and high-efficiency Ce3+, Tb3+-co-doped Ca3Sc2Si3O12 green phosphor for white light-emitting diodes,” J. Lumin., 131 [8] 1589 (2011).
    21. Y. Liu, X. Zhang, Z. Hao, Y. Luo, X. Wang, and J. Zhang, “Generating yellow and red emissions by co-doping Mn2+ to substitute for Ca2+ and Sc3+ sites in Ca3Sc2Si3O12:Ce3+ green emitting phosphor for white LED applications,” J. Mater. Chem., 21 [41] 16379 (2011).
    22. S. Shionoya, W. M. Yen, “Phosphor handbook,” CRC Press LLC, New York, USA, (1998).
    23. E. F. Schubert, “Light-Emitting Diodes,” Cambridge University Press, Cambridge, (2003).
    24. T. Koskela,因應可攜式裝置個人化需求背光照明設計挑戰加劇,新電子雜誌262期,(2008)。
    25. 葉耀宗、張學明、董建岳、劉偉仁,白光發光二極體與螢光粉之探討,工業材料雜誌 242 期,(2007)。
    26. H. S. Nalwa, L. S. Rohwer, A. J. Heeger and N. Laureate, “Handbook of luminescence, display materials, and devices–inorganic display materials,” American Scientific Publishers, (2003).
    27. B. Henderson and G. F. Imbusch, “Optical spectroscopy of inorganic solids,” Clarendon Press, Oxford, (1989).
    28. G. Blasse, “Structure and bonding”, Springer Verlag, Heidelberg, (1991).
    29. B. Henderson and G.F. Imbusch, “Optical Spectroscopy of Inorganic Solids”, Clarendon, Oxford, (1989).
    30. B. DiBartolo, “Energy Transfer Process in Condensed Matter”, Plenum, New York (1984).
    31. G. Blasse, K. C. Bleijenberg and R. C. Powell, “Luminescence and Energy Transfer” Springer-Verlag, New York (1980).
    32. L. Ozawa, H. Forest, P. M. Jaffe and G. Ban, “The Effect of Exciting Wavelength on Optimum Activator Concentration,” J. Electrochem. Soc., 118 [3] 482 (1971).
    33. A. H. Kitai, “Solid state luminescence,” Chapman & Hall, Londonp, (1993).
    34. G. Blasse, W. Schipper and J. J. Hamelink, “On the quenching of the luminescence of the trivalent cerium ion”, Inorg. Chim. Acta, 189 77 (1991).
    35. G. Blasse, C. de Mello Donegá, N. Efryushina, V. Dotsenko and I. Berezovskaya, “Luminescence of Pr3+ in indium borate (InBO3),” Solid State Commun., 92[8] 687 (1994).
    36. 劉如熹、王健源,白光發光二極體製作技術,全華圖書,台灣台北,(2001)。
    37. J. A. Deluca, “An introduction to luminescence in organic solids,” J. Chem. Educ., 57 [8] 541 (1980).
    38. 石景仁,白光發光二極體用之石榴石螢光粉合成及特性分析,國立台灣大學化學研究所碩士論文,民國90 年。
    39. D. R. Vij, “Luminescence of Solid,” Plenum Press, New York, (1998).
    40. R. C. Ropp, “Luminescence and the solid state,” Elsevier Science Publishers, B. V., The Netherlands, (1991).
    41. A. J. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics”, Progress in Quantum Electronics, 26 225 (2002).
    42. P. Atkins, L. Jones, “Chemistry molecules, Matter, and Change” 3rd edition, (1997).
    43. 劉如熹、紀喨勝,紫外光發光二極體用螢光粉介紹,全華科技圖書,台灣台北,(2003)。
    44. G. S. Jose, L. B. Lopez and J. G. Daniel, “An introduction to the optical spectroscopy of inorganic solids,” John Wiley & Sons, (2005).
    45. S. Sasaki, C. T. Prewitt, J. D. Bass and W. A. Schulze, “Orthorhombic perovskite CaTiO3 and CdTiO3: structure and space group,” Acta Cryst. C43, 1668 (1987).
    46. J. Sole, L. Bausa, and D. Jaque, “An introduction to the optical spectroscopy of inorganic solids,” Wiley, (2005).
    47. M. Gaft, R. Reisfeld, and G. Panczer, “Modern luminescence spectroscopy of minerals and materials,” Springer Verlag, Berlin Heidelberg, (2005).
    48. Q. Zhang, J. Wang, M. Zhang, W. Ding, and Q. Su, “Enhanced photoluminescence of Ca2Al2SiO7: Eu3+ by charge compensation method,” Appl. Phys. A, 88[4] 805 (2007).
    49. J. C. de Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Adv. Mater., 9[3] 230 (1997).
    50. Y. Fukuda, K. Ishida, I. Mitsuishi, and S. Nunoue, “Luminescence properties of Eu2+-doped green-emitting Sr-sialon phosphor and its application to white light-emitting diodes,” Appl. Phys. Exp, 2[1] 012401 (2009).
    51. W. Sun, Y. Gu, Q. Zhang, Y. Li, and H. Wang, “CaTiO3: Eu3+ layers coated SiO2 particles: Core-shell structured red phosphors for near-UV white LEDs,” J. Alloys Comp., 493[1-2] 561 (2010).
    52. Y. Jin, J. Zhang, S. Lu, H. Zhao, X. Zhang, and X. Wang, “Fabrication of Eu3+ and Sm3+ codoped micro/nanosized MMoO4 (M= Ca, Ba, and Sr) via facile hydrothermal method and their photoluminescence properties through energy transfer,” J. Phys. Chem. C, 112[15] 5860 (2008).
    53. B. Liu, M. Gu, X. Liu, K. Han, S. Huang, C. Ni, G. Zhang, and Z. Qi, “Enhanced luminescence through ion-doping-induced higher energy phonons in GdTaO4: Eu 3+ phosphor,” Appl. Phys. Lett., 94 [6] 061906 (2009).
    54. A. Rodriguez, M. Inoue, T. Tanaka, M. Miyake, A. Sfer, E. Kishimoto, H. Tsujigiwa, R. Rivera, and H. Nagatsuka, “Effect of CaTiO3-CaCO3 prepared by alkoxide method on cell response,” J. Bio. Mater. Res. A, 93[1] 297 (2010).
    55. N. S. Singh, R. S. Ningthoujam, N. Yaiphaba, S. D. Singh, and R. K. Vatsa, “Lifetime and quantum yield studies of Dy3+ doped GdVO4 nanoparticles: Concentration and annealing effect,” J. Appl. Phys., 105[6] 064303 (2009).
    56. Y. C. Fang, S. Y. Chu, P. C. Kao, Y. M. Chuang, and Z. L. Zeng, “Energy transfer and thermal quenching behaviors of CaLa2(MoO4)4: Sm3+,Eu3+ red phosphors,” J. Electrochem. Soc., 158[2] J1 (2011).
    57. S. Quartieri, R. Oberti, M. Boiocchi, M. C. Dalconi, F. Boscherini, O. Safonova, and A. B. Woodland, “Site preference and local geometry of Sc in garnets: Part II. The crystal-chemistry of octahedral Sc in the andradite–Ca3Sc2Si3O12 join,” Amer. Mineralogist, 91[8-9] 1240 (2006).
    58. A. Katelnikovas, T. Bareika, P. Vitta, T. Jüstel, H. Winkler, A. Kareiva, A. Žukauskas, and G. Tamulaitis, “Y3-xMg2AlSi2O12:Cex3+ phosphors – prospective for warm-white light emitting diodes,” Opt. Mater., 32[9] 1261 (2010).
    59. Y. Suzuki, M. Kakihana, Y. Shimomura, and N. Kijima, “Synthesis of Ca3Sc2Si3O12:Ce3+ phosphor by hydrothermal Si alkoxide gelation,” J.Mater. Sci., 43[7] 2213 (2008).
    60. Y. Liu, J. Hao, W. Zhuang, and Y. Hu, “Structural and luminescent properties of gel-combustion synthesized green-emitting Ca3Sc2Si3O12: Ce3+ phosphor for solid-state lighting,” J.Phys. D: Appl.Phys., 42[24] 245102 (2009).
    61. A. Podhorodecki, P. Gluchowski, G. Zatryb, M. Syperek, J. Misiewicz, W. Lojkowski, and W. Strek, “Influence of pressure‐induced transition from nanocrystals to nanoceramic form on optical properties of Ce‐doped Y3Al5O12,” J. Am. Ceram. Soc., 94[7] 2135 (2011).
    62. J. L. Wu, G. Gundiah, and A. Cheetham, “Structure–property correlations in Ce-doped garnet phosphors for use in solid state lighting,” Chem. Phys. Lett., 441[4] 250 (2007).
    63. P. McMillan, M. Akaogi, E. Ohtani, Q. Williams, R. Nieman, and R. Sato, “Cation disorder in garnets along the Mg3Al2Si3O12-Mg4Si4O12 join: an infrared, Raman and NMR study,” Phys. Chem. Minerals, 16[5] 428 (1989).
    64. J. G. Li, T. Ikegami, and T. Mori, “Fabrication of transparent, sintered Sc2O3 ceramics,” J. Am. Ceram. Soc., 88[4] 817 (2005).
    65. Y. T. Nien, K. M. Chen, and I. G. Chen, “Improved photoluminescence of Y3Al5O12:Ce nanoparticles by silica coating,” J. Am. Ceram. Soc., 93[6] 1688 (2010).
    66. A. Hofmeister and A. Chopelas, “Vibrational spectroscopy of end-member silicate garnets,” Phys. Chem. Minerals, 17[6] 503 (1991).
    67. F. Piccinelli, A. Speghini, G. Mariotto, L. Bovo, and M. Bettinelli, “Visible luminescence of lanthanide ions in Ca3Sc2Si3O12 and Ca3Y2Si3O12,” J. Rare Earth., 27[4] 555 (2009).
    68. B. Kolesov and C. Geiger, “Raman spectra of silicate garnets,” Phys. Chem. Minerals, 25[2] 142 (1998).
    69. V. Grover, Ankita Banerji, P. Sengupta, and A.K. Tyagi, “Raman, XRD and microscopic investigations on CeO2–Lu2O3 and CeO2–Sc2O3 systems: A sub-solidus phase evolution study,” J. Solid State Chem., 181[8] 1930 (2008).
    70. Y. Chen, P. Lim, S. Lim, Y. Yang, L. Hu, H. Chiang, and W. Tse, “Raman scattering investigation of Yb: YAG crystals grown by the Czochralski method,” J. Raman Spectrosc., 34[11] 882 (2003).
    71. G. S. Maciel and A. Patra, “Influence of nanoenvironment on luminescence lifetime of Er3+-activated ZrO2 nanocrystals,” J. Opt. Soc. Am. B, 21[3] 681 (2004).
    72. M. Weber, “Multiphonon relaxation of rare-earth ions in yttrium orthoaluminate,” Phys. Rev. B, 8[1] 54 (1973).
    73. S. Shi, J. Gao, and J. Zhoub, “Promising red phosphors (Ca, Eu, M) (WO4)1-z(MoO4)z (M = Mg, Zn) for solid-state lighting”, J. Electrochem. Soc., 155, 7, H525 (2008).
    74. A. Mottana, J.-L. Robert, A. Marcelli, G. Giuli, G. Della Ventura, E. Paris, and Z. Wu, “Octahedral versus tetrahedral coordination of Al in synthetic micas determined by XANES,” Am. Mineral., 82 [5] 497 (1997).
    75. M. Fröba and M. Tiemann, “A new role of the surfactant in the synthesis of mesostructured phases: Dodecyl phosphate as template and reactant for aluminophosphates,” Chem. Mater., 10 [11] 3475 (1998).
    76. P. Ildefonse, D. Cabaret, P. Sainctavit, G. Calas, A.-M. Flank, and P. Lagarde, “Aluminium X-ray absorption near edge structure in model compounds and Earth’s surface minerals,” Phys. Chem. Miner., 25 [2] 112 (1998).
    77. C. Yang, J. Chiou, H. Tsai, C. Pao, J. Jan, S. Ray, C. Yeh, K. Huang, H. Hsueh, and W. Pong, “Electronic structure and magnetic properties of Al-doped Fe3O4 films studied by x-ray absorption and magnetic circular dichroism,” Appl. Phys. Lett., 86 [6] 062504 (2005).
    78. D. Horwat, M. Jullien, F. Capon, J.-F. Pierson, J. Andersson, and J. L. Endrino, “On the deactivation of the dopant and electronic structure in reactively sputtered transparent Al-doped ZnO thin films,” J. Phys. D: Appl. Phys., 43 [13] 132003 (2010).
    79. M. FLEET and X. FENG, “Al K-edge XANES spectra of aluminosilicate minerals,” Am. Mineral., 80 432 (1995).
    80. J. Zhang, Z. Wu, T. Liu, T. Hu, and X. Ju, “XANES study on the valence transitions in cerium oxide nanoparticles,” J. Synchrotron Radiat., 8 [2] 531 (2001).
    81. J. Veiga and M. Figueiredo, “Calcium in ancient glazes and glasses: a XAFS study,” Appl. Phys. A, 92 [1] 229 (2008).
    82. S. Naftel, T. Sham, Y. Yiu, and B. Yates, “Calcium L-edge XANES study of some calcium compounds,” J. Synchrotron Radiat., 8 [2] 255 (2001).
    83. S. Naftel, Y. Yiu, T. Sham, and B. Yates, “X-ray excited optical luminescence (XEOL) studies of CaF2 at the Ca L3,2-edge,” J. Electron. Spectrosc. Relat. Phenom., 119 [2] 215 (2001).
    84. F. De Groot, J. Fuggle, B. Thole, and G. Sawatzky, “L2,3 x-ray-absorption edges of d0 compounds: K+, Ca2+, Sc3+, and Ti4+ in Oh (octahedral) symmetry,” Phys.Rev. B, 41 [2] 928 (1990).
    85. A. P. Grosvenor, F. Ramezanipour, S. Derakhshan, C. Maunders, G. A. Botton, and J. E. Greedan, “Effects of bond character on the electronic structure of brownmillerite-phase oxides, Ca2B’xFe2-xO5 (B’ = Al, Ga): an X-ray absorption and electron energy loss spectroscopic study,” J. Mater. Chem., 19 [48] 9213 (2009).
    86. J. T-Thienprasert, S. Rujirawat, W. Klysubun, J. N. Duenow, T. J. Coutts, S. B. Zhang, D. C. Look, and S. Limpijumnong, “Compensation in Al-doped ZnO by Al-related acceptor complexes: Synchrotron X-ray absorption spectroscopy and theory,” Phys. Rev. Lett., 110 055502 (2013).
    87. 江建志, “鈰活化石榴石系列螢光粉體結構與特性”, 國立成功大學材料科學及工程學系博士論文,民國98 年。
    88. A. L. Allred, “Electronegativity values from thermochemical data,” J. Inorg. and Nucl. Chem., 17 215 (1961).
    89. A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si,Ge)3O12 and its use in LED based lighting,” Chem. Mater., 18 [14] 3314 (2006).
    90. W. W. Holloway and M. Kestigian, “Optical properties of cerium actived garnet crystals,” J. Opt. Soc. Am., 59, 60 (1969)
    91. 吳佳蓁,真空紫外線激發螢光粉之設計、製備與發光特性鑑定,國立交通大學應用化學研究所系博士論文,民國96 年。
    92. C.-C. Chung, J.-H. Jean, “Synthesis of Ca-α-SiAlON:Eux phosphor powder by carbothermal-reduction–nitridation process,” Mater. Chem. Phys., 123 13 (2010).
    93. T. Kurushima, G. Gundiah, Y. Shimomura, M. Mikami, N. Kijimaa and A. K. Cheetham, “Synthesis of Eu2+-activated MYSi4N7 (M= Ca, Sr, Ba) and SrYSi4−xAlx N7−xOx (x= 0–1) green phosphors by carbothermal reduction and nitridation,” J. Electrochem. Soc., 157 3 J64 (2010).
    94. http://mtdatasoftware.tech.officelive.com/dgox3.htm.
    95. P. Makreski, T. Runčevski, and G. Jovanovski,”Minerals from Macedonia. XXVI. Characterization and spectra–structure correlations for grossular and uvarovite. Raman study supported by IR spectroscopy,” J. Raman. Spectrosc., 42[1] 72 (2011).
    96. J. Roman, S. Padilla, and M. Vallet-Regí,”Sol-gel glasses as precursors of bioactive glass ceramics,” Chem. Mater., 15[3] 798 (2003).
    97. J. G. Li, T. Ikegami, and T. Mori, “Fabrication of transparent, sintered Sc2O3 ceramics,” J. Am. Ceram. Soc., 88 [4] 817 (2005).
    98. R. K. Moore, W. B. White and T. V. Long, “Vibrational spectra of the common silicates: I. The garnets,” Am. Mineral. 56 54 (1971).
    99. M. Peng, H. K. Mao, D. Li, and E. C. T. Chao, “Raman spectroscopy of garnet-group minerals,” Chin. J. Geochem. 13[2] 176 (1994).
    100. A. Ubaldini and M. M. Carnasciali, “Raman characterisation of powder of cubic RE2O3 (RE = Nd, Gd, Dy, Tm, and Lu), Sc2O3 and Y2O3,” J. Alloys Comp., 454 374 (2008).

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE