簡易檢索 / 詳目顯示

研究生: 莊雅善
Chuang, Ya-Shen
論文名稱: 在瑞雷衰減環境下的差動空時方塊碼
Differential Space-Time Block Codes under Rayleigh Fading
指導教授: 張名先
Chang, Ming-Xian
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 64
中文關鍵詞: 空時雷瑞
外文關鍵詞: space-time, Rayleigh
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   空時編碼和調變藉由多根傳送天線傳送訊號改善了多路徑無線通道的效能。各式各樣的時空編碼方案已經被提出。然而直到目前為止,大多數關於空時編碼的研究,已假設在接收端可得到目前通道衰減情形的完美估測。在某些局勢下,我們可能想要去放棄通道估測,為了去減少系統的複雜度和成本,或者衰減的情形改變的非常快速,以至於通道估測是困難的或需要太多的訓練符號。
      我們提出了幾個可行的、簡單的差動編碼和解碼傳送方案,探究因為多根傳送天線所造成的分歧。這些新的偵測方案傳送端和接收端都不需要去知道通道狀態資訊,並且可以使用相等能量星座圖而且編碼是簡單的;在接收端,解碼被完成了,並且解碼的複雜度低。

     Space-time coding and modulation exploit the presence of multiple transmit antennas to improve the performance on multipath radio channels. Various space-time coding schemes have been proposed. However so far, most research on space-time coding has assumed that perfect estimates of current channel fading conditions are available at the receiver. However, in certain situations, we may want to forego channel estimation in order to reduce the complexity and cost of the handset, or perhaps fading conditions change so rapidly that channel estimation is difficult or requires too many training symbols.
     The thesis presents several practical, feasible, and simple transmission schemes for exploiting diversity given by multiple transmit antennas when neither the transmitter nor the receiver has access to channel state information. The new detection scheme can use equal energy constellations and encoding is simple. At the receiver, decoding is achieved with low decoding complexity. The transmission requires no channel state side information at the receiver. The schemes can be considered as the extension of differential detection schemes to two transmit antennas.

    Chinese Abstract…‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥Ⅰ English Abstraact‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥Ⅱ Acknowledgements‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥Ⅲ Contents…‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥…‥‥‥‥‥‥‥ Ⅳ List of Figures‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥…‥‥‥‥‥Ⅶ List of Tables…‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥…‥‥‥‥‥ Ⅹ 1. Introduction…‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1 2. Review of space-time block codes‥‥‥‥‥‥‥‥‥‥‥‥‥ 2 2.1 Introduction‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2 2.2 The classical maximal-ratio receive combining (MRRC) scheme‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥2 2.3 Alamouti Space-Time Block code‥‥‥‥‥‥‥‥‥‥‥‥3 2.4 STBC for real signal constellations‥‥‥‥‥‥‥‥‥‥‥8 2.5 STBC for complex signal constellations‥‥‥‥‥‥‥‥‥ 8 2.6 Effect of imperfect channel estimation on performance‥‥ 9 2.6.1 A method for channel estimation‥‥‥‥‥‥‥‥‥‥9 2.6.2 Results‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 11 2.7 Effect of antenna correlation on performance‥‥‥‥‥‥11 3. A example of DQPSK and the Rayleigh fading simulator‥‥‥12 3.1 A DQPSK example‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12 3.1.1 Modulator‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥12 3.1.2 Demodulator‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥14 3.2 The Rayleigh fading simulator‥‥‥‥‥‥‥‥‥‥‥‥ 16 4. The differential space-time block codes with QPSK under the Rayleigh fading environment‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 22 4.1 Two transmit antennas and one receive antenna (for rate = 1) ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 25 4.2 Two transmit antennas and two receiver antennas (for rate = 1)‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 28 4.3 Four transmit antennas and one receive antenna‥‥‥‥ 33 4.3.1 Complex (for rate = 1/2)‥‥‥‥‥‥‥‥‥‥‥‥33 4.3.2 Real (for rate = 1)‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥38 4.4 Four transmit antennas and two receive antennas‥‥‥‥42 4.4.1 Complex (for rate = 1/2)‥‥‥‥‥‥‥‥‥‥‥‥ 42 4.4.2 Real (for rate = 1)‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 46 4.5 Three transmit antennas and one receive antenna for transmitting 4 kinds of signals‥‥‥‥‥‥‥‥‥‥‥‥‥48 4.5.1 Complex (for rate = 3/8)‥‥‥‥‥‥‥‥‥‥‥‥ 48 4.5.2 Real (for rate = 3/4)‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 52 4.6 Three transmit antennas and two receive antennas for transmitting 4 kinds of signals‥‥‥‥‥‥‥‥‥‥‥‥‥55 4.6.1 Complex (for rate = 3/8)‥‥‥‥‥‥‥‥‥‥‥‥ 55 4.6.2 Real (for rate = 3/4)‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 59 5. Conclusions and future work‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 62 Appendix‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 63 Bibliograph‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 64

    [1] S. M. Alamouti, “A simple transmit diversity technique for wireless communications”, IEEE Journal Select. Areas Commun., vol. 16, Oct. 1998.
    [2] ”The Simulation of Independent Rayleigh Faders”, IEEE Transactions on communications, vol. 50, No. 9, September 2002.
    [3] V. Tarokh, A. Naguib, N. Seshadri and A. R. Calderbank, “Space-time codes for high data rate wireless communication: Performance criteria in the presence of channel estimation errors, mobility, and multiple paths”, IEEE Trans. Commun. vol. 47, no. 2, Feb. 1999.
    [4] H. Jafarkhani and V. Tarokh, ”Multiple transmit antenna differential detection from generalized Orthogonal designs”, IEEE Trans. Inform. Theory, vol. 47, no. 6, September 2001.
    [5] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from orthogonal designs,” IEEE Trans. Inform. Theory, vol. 45, July 1999.
    [6] B. Vucetic and J. Yuan, “Space-Time Coding” John Wiley & Sons Ltd., 2003.
    [7] B. Hochwald, T. L. Marzetta and C. B. Papadias, “A transmitter diversity scheme for wideband CDMA systems based on space-time spreading”, IEEE Journal on Selected Areas in Communications, vol. 19,no. 1, Jan. 2001, pp. 48-60.
    [8] A.V. Geramita and J. Seberry, Orthogonal Designs, Quadratic Forms and Hadamard Matrices, Lecture Notes in Pure and Applied Mathematics, vol. 43. New York and Basel: Marcel Dekker, 1979.

    無法下載圖示 校內:2105-07-04公開
    校外:2105-07-04公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE