| 研究生: |
廖漢智 Liao, Han-Chih |
|---|---|
| 論文名稱: |
化成溫度及外加電位對磷酸錳皮膜性質之影響研究 Effects of Coating Temperature and Applied Potential on the Properties of Manganese Phosphate Coating |
| 指導教授: |
蔡文達
Tsai, Wen-Ta |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 外加電位 、結晶性 、極化阻抗 、磷酸錳 |
| 外文關鍵詞: | Crystallinity, Manganese Phosphate, Applied Potential, Polatization Resistance |
| 相關次數: | 點閱:138 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討鉻鉬釩合金鋼基材於進行磷酸錳化成皮膜處理時,不同之化成溫度及其外加電位對所生成之化成皮膜結構與耐蝕性質的影響。研究中利用掃瞄式電子顯微鏡(Scanning electron microscopy, SEM)、能量散佈光譜儀(Energy dispersive spectroscopy, EDS)及X光繞射分析儀(X-ray diffraction, XRD)等分析皮膜的微觀結構及其化學組成,並以電化學交流阻抗頻譜(Electrochemical impedance spectroscopy, EIS)測試及鹽水噴霧試驗評估其皮膜之耐蝕性。
研究結果顯示,於不同化成溫度下所生成之皮膜的結晶性會有所差異。當化成溫度為70及80 ℃時,所生成之皮膜主要為結晶性不佳之磷酸錳層,其極化阻抗值約為1000~1500 Ω-cm2左右。隨著化成處理時間的增加,皮膜厚度增加,但其阻抗值並未隨之有明顯地增加;而於90 ℃下進行化成皮膜處理時,會先於基材表面上生成結晶性較差之磷酸錳皮膜,再於其上沈積一層顆粒狀的結晶層,其組成為(Mn,Fe)5H2(PO4)4‧4H2O。而該溫度下化成約40分鐘後,即可於基材表面生成一完整被覆之磷酸鹽皮膜,其阻抗值可達13000 Ω-cm2左右。
於不同外加電位下進行化成皮膜處理所生成之皮膜具不同之結構與耐蝕性。於90℃下,外加陽極電位所生成之皮膜可得較厚之皮膜,而皮膜相對於開路電位下所得之皮膜,有較高的鐵含量,且有較低極化阻抗;外加陰極電位時,所生成之皮膜則相對開路電位下生成之皮膜有較低的鐵含量,以及較高之阻抗值。
The manganese phosphating conversion coating formed on Cr-Mo-V steel with different temperature and applied potential is investigated in this study. The morphology, cross section and crystal structure have been investigated by SEM, EDS and XRD. And the corrosion resistance has been evaluated by EIS and salt spray test.
The result showed that the crystallinity of the manganese phosphating conversion coating formed at 70 or 80 ℃ was poor, and its polarization resistance was about 1000~1500 Ω-cm2. The XRD showed that phosphate coating with poor crystallinity was formed on the surface of Cr-Mo-V steel. The thickness of the coating increased with the increasing of phosphating time. And the resistance didn’t vary obviously with the increasing of thickness. The whole phosphating reaction involved two steps: forming of manganese phosphating coating layer with poor crystallinity and forming of crystalline (Mn,Fe)5H2(PO4)4‧4H2O. As the phosphating increased, the coverage of the phosphating coating increased. The surface of substrate would be completely covered with crystalline phosphating coating. And the polarization resistance would be raised to the value 13000 Ω-cm2 approximately.
The phosphating coating formed at 90 ℃ with applied anodic potential would be thicker than the coating formed without applying potential because of the increase in thickness of amorphous phosphating layer. Besides, the resistance was inferior to the coating formed without applying potential.
On the contrary, the phosphating coating formed at 90 ℃ with applied cathodic potential would be thinner than the coating formed without applying potential because of the decrease in thickness of the amorphous phosphating layer. Besides, the resistance was superior to the coating formed without applying potential.
1.D.B.Freeman “Phosphating and Metal Pre-treatment a guide to modern processes and pratice” Woodhead-Faulkner Ltd, 1986
2.Werner Rausch “The Phosphating of Metals”, Finishing Publications LTD, 1990
3.L. Lazzarotto, C. Marechal, L. Dubar, A. Dubois, J. Oudin, Surface and Coating Technology 122(1999) p.94
4.D. He, A. Zhou, Y. Liu, L. Nie, S. Yao, Surface and Coating Technology 126(2000) p.225
5.P. K. Sinha, R. Feser, Surface and Coating Technology 161(2002) p.158
6.Thomas W. Cape, Metals Handbook, ASM, International, Materials Park, Ohio, Vol. 13, p.383, 1987
7.Kevin Ogle, Michael Wolpers, “Phosphatin conversion coatings” in ASM Handbook vol.13A
8.British Patent NO. 3119 (Oct. 27, 1869).
9.British Patent NO. 8667 (Apr. 10, 1869).
10.S. Carpenter, M. Carpenter, Metal Finishing, 100(2002) p.73
11.B. Gruss, Metal Finishing 98(2000) p.52
12.M. Wolpers, J. Angeli, Applications of Surface Science 179(2001) p.282
13.L. Fedrizzi, F. Deflorian, S. Rossi, L. Fambri, P. L. Bonora, Progress in Organic Coatings 42((2001) p.65
14. C. T. Lin, Progress in Organic Coatings 42(2001) p.65
15.G. Gόrecki, Metal Finishing 98(2000) p.97
16.P. –E. Tegehall, N. –G. Vannerberg, Corrosion Science 32(1991) p.635
17.T. S. N. Sankara Narayanan, Metal Finishing 94(1996) p.86
18.Y. Arnaud, Y. E. Sahakian, M. Romand, Applied Surface Science 32(1988 )p.281
19.E. Klusmann, U. Konig, J. W. Schultze, Materials and Corrosion 46(1995)p.83
20.W. J. Van Ooij, Surface and Interface Analysis 9(1986) p.367
21.W. J. Van Ooij, T. H. Visser, Spectrochimica Acta 39(1983) p.1541
22.MIL-S-46047E Steel, Bars and Blanks(1-3/4 inches and over in diameter) for Small Arms Weapons, 1978
23.MIL-P-16232F Phosphate coating, Heavy, Manganese or Zinc ( For ferrous metals), 1978
24.ASTM B 117-97 “Srandard Practice for Operating Salt Spray (Fog) Apparatus”, 1997
25.E. L. Ghali and J. A. Potvin, Corrosion Science 12(1972) p.583
26.V. Cupr and J. B. Pelikan, Metalloberflache 6(1965) p.187
27.Yanxu Li, M. B Ives, K. S. Coley, J. R, Rodda, Corrosion Science 46(2004) p.1969
28.D. R. Gabe, C. P. S. Johal, Metal Finishing April 1985 p.41
29.D. Weng, P. Jokiel, A. Uebleis, H. Boehni, Surface and Coating Technology, 88(1996) p.147
30.中國國家標準,CNS 8886 ,”鹽水噴霧試驗法” 2002