| 研究生: |
孔致遠 Kung, Chih-Yuan |
|---|---|
| 論文名稱: |
一個基於時序適應性窗口之每秒取樣十萬次的十位元低功耗逐漸趨近式類比數位轉換器 A Low Energy Consumption 10-Bit 100kS/s SAR ADC with Time-based Adaptive Window |
| 指導教授: |
張順志
Chang, Soon-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 逐漸趨近式類比數位轉換器 、時域窗口 、適應性窗口 、低功耗 、低電壓 |
| 外文關鍵詞: | SAR ADC, timing window, adaptive window, low-power, low-voltage |
| 相關次數: | 點閱:102 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個使用適應性窗口每秒取樣十萬次的十位元低功耗逐漸趨近式類比數位轉換器。本研究運用記錄比較器的運作時間,創造出適應性窗口運作機制,與過去的窗口技巧相比,適應性窗口可以更積極地減少DAC、比較器以及數位電路的耗能,另外使用時域來創造窗口可以避免比較器發生亞穩態而導致後級電路不正常運作的情況發生。
本設計以台積電90奈米CMOS標準1P9M製程實作晶片,核心電路面積佔140 μm × 420 μm。量測結果顯示,在0.35伏特電源供電及每秒取樣十萬次的操作速度下,訊號雜訊比之最大值為57.18分貝,換算之有效位元數9.21位元,消耗功率為74 nW,每次資料所消耗的能量為1.25 fJ。
This thesis presents a 0.35 V 100 kS/s 10-bit successive approximation register (SAR) ADC with adaptive window (AW) in 90 nm CMOS. The SAR ADC uses the transient information of the latch comparator to create redundancy ranges. Furthermore, the proposed technique also uses the transient information to produce AW for each bit which reduces the power consumption of the comparator, the DAC and also digital control logic. Last but not least, the timing control window can also decrease the possibility ADC from encountering meta-stability. The measurement result achieves an SNDR of 57.18 dB, an ENOB of 9.2 bits, a power consumption of 74 nW, and a resulting FoM of 1.25 fJ/conv.-step.
[1] B. Murmann, “ADC Performance Survey 1997-2015,” [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.
[2] D. Robertson, “The past, present, and future of data converters and mixed signal ICs: a universal model,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2006, pp. 1–4.
[3] G.-Y. Huang, S.-J. Chang, C.-C. Liu and Y.-Z. Lin, “A 1-µW 10-bit 200-kS/s SAR ADC with a bypass window for biomedical applications,” in IEEE Journal of Solid-State Circuits, vol. 47, no. 11, pp. 2783–2795, Nov. 2012.
[4] C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin and C.-M. Huang, “A 1V 11fJ/conversion-step 10bit 10MS/s asynchronous SAR ADC in 0.18µm CMOS,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2010, pp.241–242.
[5] J. Guerber, H. Venkatram, M. Gande, A. Waters and U. K. Moon, “A 10-b Ternary SAR ADC with quantization time information utilization,” in IEEE Journal of Solid-State Circuits, vol. 47, no. 11, pp. 2604–2613, Nov. 2012.
[6] Y.-H. Chung, M.-H. Wu and H.-S. Li, “A 24μW 12b 1MS/s 68.3dB SNDR SAR ADC with two-step decision DAC switching,” in IEEE Custom Integrated Circuits Conference, 2013, pp. 1–4.
[7] Y.-H. Chung, C.-H. Tsai and H.-C. Yeh, “A 5-b 1-GS/s 2.7-mW binary-search ADC in 90nm digital CMOS,” in IEEE International System-on-Chip Conference, 2015, pp. 25–29.
[8] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems, 2nd Ed. Upper Saddle River, NJ, USA: Prentice-Hall, 1996.
[9] B. Razavi, Principles of Data Conversion System Design, New York, USA: Wiley-IEEE Press, 1995.
[10] R. V. D. Plassche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters, 2nd Ed. Boston, USA: Kluwer Academic Publishers, 2003.
[11] N.-Y. Wang, “A 10-bit 110-MS/s SAR ADC with 2.5-bit predictive capacitor switching procedure,” M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, 2011.
[12] B. Razavi, Principles of Data Conversion System Design, New York, USA: Wiley-IEEE Press, 1995.
[13] R. V. D. Plassche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters, 2nd Ed. Boston, USA: Kluwer Academic Publishers, 2003.
[14] N.-Y. Wang, “A 10-bit 110-MS/s SAR ADC with 2.5-bit predictive capacitor switching procedure,” M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, 2011.
[15] T. C. Carusone, D. A. Johns, and K. W. Martin, Analog Integrated Circuit Design, 2nd Ed. Hoboken, NJ, USA: John Wiley & Sons, 2012.
[16] P. E. Allen, and D. R. Holberg, CMOS Analog Circuit Design, 2nd Ed. New York, USA: Oxford University Press, 2002.
[17] D. W. Cline, and P. R. Gray, “A power optimized 13-b 5 Msamples/s pipelined analog-to-digital converter in 1.2 µm CMOS,” in IEEE Journal of Solid-State Circuits, vol. 31, no. 3, pp. 294–303, Mar. 1996.
[18] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems, 2nd Ed. Upper Saddle River, NJ, USA: Prentice-Hall, 1996.
[19] M. Gustavsson, J. J. Wikner, and N. N. Tan, CMOS Data Converters for Communications, New York, USA: Kluwer Academic Publishers, 2002.
[20] Data Conversion Handbook, Analog Devices, Inc., Norwood, MA, USA, 2004.
[21] Y.-T. Huang, “A 6-bit 220-MS/s successive-approximation analog-to-digital converter,” M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, 2008.
[22] B. Goll, and H. Zimmermann, Comparators in Nanometer CMOS Technology, Berlin, Germany: Springer, 2015.
[23] Y. Chiu, B. Nikolic, and P. R. Gray, “Scaling of analog-to-digital converters into ultra-deep-submicron CMOS,” in IEEE Custom Integrated Circuits Conference, 2005, pp. 375–382.
[24] J. K. Fiorenza, T. Sepke, P. Holloway, C.G. Sodini, and H.-S. Lee, “Comparator-based switched-capacitor circuits for scaled CMOS technologies,” in IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2658–2668, Dec. 2006.
[25] B. Hershberg, S. Weaver, K. Sobue, S. Takeuchi, K. Hamashita, and U.-K. Moon, “Ring amplifiers for switched capacitor circuits,” in IEEE Journal of Solid-State Circuits, vol. 47, no. 12, pp. 2928–2942, Dec. 2012.
[26] Y. Lim, and M. P. Flynn, “A 100MS/s 10.5b 2.46mW comparator-less pipeline ADC using self-biased ring amplifiers,” in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 202–203.
[27] M. V. Elzakker, E. V. Tuijl, P. Geraedts, D. Schinkel, E. A. M. Klumperink, and B. Nauta, “A 10-bit charge-redistribution ADC consuming 1.9 μW at 1 MS/s,” in IEEE Journal of Solid-State Circuits, vol. 45, no. 5, pp. 1007–1015, May 2010.
[28] C.-Y. Liou, and C.-C. Hsieh, “A 2.4-to-5.2fJ/conversion-step 10b 0.5-to-4MS/s SAR ADC with charge-averaging switching DAC in 90nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 280–281.
[29] H.-Y. Tai, Y.-S. Hu, H.-W. Chen, and H.-S. Chen, “A 0.85fJ/conversion-step 10b 200kS/s subranging SAR ADC in 40nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 196–197.
[30] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731–740, Dec. 2010.
[31] M. Hesener, T. Eichler, A. Hanneberg, D. Herbison, F. Kuttner, H. Wenske, “A 14b 40MS/s redundant SAR ADC with 480MHz clock in 0.13μm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2007, pp. 248–249.
[32] V. Hariprasath, J. Guerber, S.-H. Lee, and U. Moon, “Merged capacitor switching based SAR ADC with highest switching energy-efficiency,” Electron. Lett., vol. 46, pp. 620–621, Apr. 2010.
[33] Y. H. Chung, “The swapping binary-window DAC switching technique for SAR ADCs,” in IEEE International Symposium on Circuits and Systems, 2013, pp. 2231-2234.
[34] Y. Zhu, C.-H. Chan, U-F. Chio, S.-W. Sin, S.-P. U, R. P. Martins, and F. Maloberti, “A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS,” in IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp. 1111–1121, Jun. 2010.
[35] H. Wei, C.-H. Chan, U-F. Chio, S.-W. Sin, S.-P. U, R. P. Martins, and F. Maloberti, “An 8-b 400-MS/s 2-b-per-cycle SAR ADC with resistive DAC,” in IEEE Journal of Solid-State Circuits, vol. 47, no. 11, pp. 2763–2772, Nov. 2012.
[36] C.-C. Liu, “A 10-bit 320-MS/s low-cost SAR ADC for IEEE 802.11ac applications in 20-nm CMOS,” in IEEE A-SSCC, 2014, pp. 77–80.
[37] T. Morie, T. Miki, K. Matsukawa, Y. Bando, T. Okumoto, K. Obata, and S. Dosho, “A 71dB-SNDR 50MS/s 4.2mW CMOS SAR ADC by SNR enhancement techniques utilizing noise,” in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 272–273.
[38] R. Kapusta, J. Shen, S. Decker, H. Li, and E. Ibaragi, “A 14b 80MS/s SAR ADC with 73.6dB SNDR in 65nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 472–473.
[39] P. Harpe, E. Cantatore, and A. V. Roermund, “An oversampled 12/14b SAR ADC with noise reduction and linearity enhancements achieving up to 79.1dB SNDR,” in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 194–195.
[40] J. L. McCreary, and P. R. Gray, “All-MOS charge redistribution analog-to-digital conversion techniques—Part I,” in IEEE Journal of Solid-State Circuits, vol. SC-10, no. 6, pp. 371–379, Dec. 1975.
[41] B. P. Ginsburg, and A. P. Chandrakasan, “An energy-efficient charge recycling approach for a SAR converter with capacitive DAC,” in Proc. IEEE ISCAS, 2005, pp. 184–187.
[42] Y.-K. Chang, C.-S. Wang, and C.-K. Wang, “A 8-bit 500-KS/s low power SAR ADC for bio-medical applications,” in IEEE A-SSCC, 2007, pp. 228–231.
[43] C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, and C.-M. Huang, “A 1V 11fJ/conversion-step 10bit 10MS/s asynchronous SAR ADC in 0.18μm CMOS,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2010, pp. 241–242.
[44] C.-H. Kuo, “A 10-bit 120-MS/s SAR ADC with compact architecture and noise suppression technique,” M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, 2014.
[45] G.-Y. Huang, S.-J. Chang, C.-C. Liu, and Y.-Z. Lin, “A 1-μW 10-bit 200-kS/s SAR ADC with a bypass window for biomedical applications,” IEEE J. Solid-State Circuits, vol. 47, no. 11, pp. 2783–2795, Nov. 2012.
[46] F. Kuttner, "A 1.2V 10b 20MSample/s non-binary successive approximation ADC in 0.13/spl mu/m CMOS," in IEEE ISSCC Dig. Tech. Papers, 2002, pp. 176–177.
[47] C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M. Huang, C.-H. Huang, L. Bu, and C.-C. Tsai, “A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation,” in IEEE ISSCC Dig. Tech. Papers, 2010, pp. 386–387.
[48] W. Liu et al., “A 12b 22.5/45MS/s 3.0mW 0.059 mm2 CMOS SAR ADC achieving over 90 dB SFDR,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2010, pp. 380−381.
[49] W. Liu et al., “A 12-bit 50-MS/s 3.3 mW SAR ADC with background digital calibration,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2012, pp. 1–4.
[50] T. Ogawa et al., “SAR ADC algorithm with redundancy,” in Proc. IEEE Asia Pacific Conf. Circuits Syst. (APCCAS), Nov. 2008, pp. 268–271.
[51] H.-Y. Tai et al., “A 3.2 fJ/c.-s. 0.35 V 10 b 100 kS/s SAR ADC in 90 nm CMOS,” in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, Jun. 2012, pp. 92–93.
[52] A. Hastings, The Art of Analog Layout. Englewood Cliffs, NJ: Prentice-Hall, 2001.
[53] Y.-H. Chung, C.-W. Yen and M.-H. Wu, "A 24-uW 12-bit 1-MS/s SAR ADC with two-step decision DAC switching in 110-nm CMOS," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 11, pp. 3334-3344, Nov. 2016.
[54] J. Guerber, M. Gande, and U.-K. Moon, “The analysis and application of redundant multistage ADC resolution improvements through PDF residue shaping,” in IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 8, pp. 1733–1742, Aug. 2012.
[55] S. Jiang, M. A. Do, K. S. Yeo, and W. M. Lim, “An 8-bit 200-MSample/s pipelined ADC with mixed-mode front-end S/H circuit,” in IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 6, pp. 1430–1440, Jul. 2008.
[56] S.-I. Chang, K. Al-Ashmouny, and E. Yoon, “A 0.5V 20fJ/Conversion-Step Rail-to-rail SAR ADC with Programmable Time-Delayed Control Units for Low-Power Biomedical Application,” in Proc. IEEE ESSCIRC, Sep. 2011, pp. 399-342.
[57] Franz Kuttner, “A 1.2 V 10b 20 MSample/s non-binary successive approximation ADC in 0.13 μm CMOS,”in IEEE ISSCC Dig. Tech. Papers, Feb. 2010, pp. 176–177.
[58] P. Harpe, G. Dolmans, K. Philips, and H. de Groot, “A 0.7V 7-to-10bit 0-to-2MS/s Flexible SAR ADC for Ultra Low-Power Wireless Sensor Nodes,” in Proc. IEEE ESSCIRC, 2012, pp. 373–376.
[59] C.-H. Kuo and S.-J. Chang “A 10–bit 120–MS/s SAR ADC with compact architecture and noise suppression technique,” Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, Thesis for Master of Science, July, 2014
[60] G.-Y. Huang, S.-J. Chang, C.-C. Liu, and Y.-Z. Lin, “10-bit 30-MS/s SAR ADC using a switchback switching method,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 3, pp. 584–588, Mar. 2013
[61] M. Ding, P. Harpe, Y. H. Liu, B. Busze, K. Philips and H. de Groot, "26.2 A 5.5fJ/conv-step 6.4MS/S 13b SAR ADC utilizing a redundancy-facilitated background error-detection-and-correction scheme," in IEEE ISSCC Dig. Tech. Papers, San Francisco, CA, 2015, pp. 1-3.
[62] S.-W. M. Chen, and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13-μm CMOS,” in IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2669–2680, Dec. 2006.
[63] Ying-Zu Lin, Chun-Cheng Liu, Guan-Ying Huang, Ya-Ting Shyu, Yen-Ting Liu, and Soon-Jyh Chang, "A 9-bit 150-MS/s Subrange ADC Based on SAR Architecture in 90-nm CMOS," IEEE Transactions on Circuits and Systems - I, vol. 60, no. 3, pp.570-581, Mar. 2013.
[64] M. Dessouky, and A. Kaiser, “Input switch configuration suitable for rail-to-rail operation of switched opamp circuits,” Electron. Lett., vol. 35, pp. 8–10, Jan. 1999.
[65] G. Huang, and P. Lin, “A fast bootstrapped switch for high-speed high-resolution A/D converter,” in IEEE APCCAS, 2010, pp. 382–385.
[66] R. Vitek, E. Gordon, S. Maerkovich, and A. Beidas, “A 0.015mm2 63fJ/conversion-step 10-bit 220MS/s SAR ADC with 1.5b/step redundancy and digital metastability correction,” in IEEE Custom Integrated Circuits Conference, 2012, pp. 1–4.
[67] P. Harpe, H. Gao, R. van Dommele, E. Cantatore and A. van Roermund, “21.2 A 3nW signal-acquisition IC integrating an amplifier with 2.1 NEF and a 1.5fJ/conv-step ADC,” in IEEE ISSCC Dig. Tech. Papers, 2015, pp. 1–3.
[68] S. Jeong et al., "A 120nW 8b sub-ranging SAR ADC with signal-dependent charge recycling for biomedical applications,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2015, pp. C60–C61.