| 研究生: |
何鴻丞 Ho, Hung-Cheng |
|---|---|
| 論文名稱: |
多孔矽基板成長類碳薄膜應用於紫外光感測之研究 The Growth of Diamond-like Carbon Thin Films on Porous Si Substrates for UV Detecting Applications |
| 指導教授: |
方炎坤
Fang, Yean-Kuen 羅錦興 Luo, Ching-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 類鑽碳 、多孔矽 、紫外光感測 |
| 外文關鍵詞: | UV light detection, Porous Si Substrates, DLC |
| 相關次數: | 點閱:75 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文描述利用快速升溫化學氣相沉積系統(RTCVD)於N型 (111) 矽基板或多孔矽基板上成長類鑽碳薄膜(Diamond-like Carbon, DLC),並藉以完成類鑽碳薄膜金半金(Metal-Semiconductor-Metal)紫外光感測器之研究。類鑽碳為一種內含大量sp3鍵結的亞穩態非晶碳,它是一種泛用度極高的寬能隙半導體,含有許多優良的特性如高硬度、高化學安定性、抗反射性以及極佳的生物相容性,類鑽碳薄膜已被報導可應用於耐磨耗、電子、光學、生醫材料以及微機電(Micro-electromechanical, MEMs )元件等方面。
本研究中,吾人以丙烷(C3H8)為碳源,並添加氫氣作為載氣,於高溫下沈積類鑽碳膜,並藉由改變丙烷流量與RTCVD沉積溫度來調整薄膜的特性。吾人使用拉曼光譜(Raman Spectrum)、AFM以及FE-SEM來分析薄膜基本特性,再將各種所成長之類鑽碳薄膜製作為類鑽碳金半金紫外光感測器,進一步比較各元件特性差異。
此外,利用電化學陽極蝕刻法(electrochemical anodization method)製備多孔矽基板,並在多孔矽基板上生成類鑽碳薄膜及完成多孔矽類鑽碳金半金紫外光感測器。多孔矽基板具有多重反射之特性可強化類鑽碳薄膜對光線的捕捉以提升紫外光感測器之效能。實驗結果發現多孔矽基板所製作的紫外光感測器之光增益(202倍)比未蝕刻矽基板之紫外光感測器之光增益(22倍)約提升了10倍。如此證實,多孔狀結構的類鑽碳薄膜金半金元件的確可作為高性能紫外光感測器之用。
In this thesis, we report the fabrication of the optoelectronic devices with a metal-semiconductor-metal (MSM) structure based on Diamond-like carbon (DLC) films in details. The DLC films were deposited on Si and porous Si substrates by RTCVD. Both metals of Al and Au were used as electrode contacts. The DLC is a metastable form amorphous carbon with significant sp3 bonding and has the features of high mechanical hardness, chemical inertness, antireflection and high biocompatibility. It has been widely applied as protective coatings in area, such as optical windows, magnetic storage disks, biomedical coatings and as micro-electromechanical devices (MEMs).
In depositing the DLC films, we used C3H8 gas as carbon source and H2 gas as carrier. By adjusting the C3H8 gas density and depositing temperature, the optimized deposition parameters for UV light detection were found.
Specifically, DLC films were deposited on porous Si substrates prepared by electrochemical anodization method.
With the porous Si substrate, almost 10 times improvement in the photo/dark current ratio was found in the DLC MSM UV detecting device due to the feature of multi-reflection of light in the porous structure. Thus, the developed DLC device on porous Si substrates has a potential for high performance UV light detecting applications.
※參考文獻
[1] J. Robertson, “Diamond-like amorphous carbon,” Materials Science and Engineering: R , vol. 37, pp.129-281, 2002.
[2] S. Aisenberg and R. Chabot,“Ion-Beam Deposition of Thin Films of Diamond-like Carbon,” Journal of Vacuum Science and Technology, vol. 8, pp. 112, 1971.
[3] E.G. Spencer, P.H. Schmidt, D.C. Joy, and F.J. Sansalone, “Ion-beam-deposited polycrystalline diamond-like films,” Appl. Phys. Lett., vol. 29, pp. 118-120, 1976.
[4] L. Holland and S. Ojha, “Deposition of hard and insulating carbonaceous films on an r.f. target in a butane plasma,” Thin Solid Films, vol. 38, pp. L17-L19, 1976.
[5] J.C. ANGUS and C.C. HAYMAN, “Low-Pressure, Metastable Growth of Diamond and "Diamond-like" Phases,” Science, vol. 241, pp. 913-921 ,Aug. 1988.
[6] A.C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Physical Review B, vol. 61, p. 14095, May. 2000.
[7] E. Monroy, F. Calle, C. Angulo, P. Vila, A. Sanz, J. A. Garrido, E. Calleja, E. Mũoz, S. Haffouz, B. Beaumont, F. Omnes, and P. Gibart, "GaN-Based Solar-Ultraviolet Detection Instrument," Applied Optics, vol. 37, no. 22, pp. 5058-5062, Aug. 1998
[8] Hadis Morkoc, Aldo Di Carlo, and Roberto Cingolani, “GaN-based modulation doped FETs and UV detectors,” Solid-State Electronics, vol. 46, pp.157–202, Feb. 2002
[9] L. A. Balagurov, S. C. Bayliss, D. G. Yarkin, S. Ya. Andrushin, V. S. Kasatochkin, A. F. Orlov, and E. A. Petrova, “Low noise photosensitive device structures based on porous silicon,” Solid-State Electronics, vol. 47, pp. 65-60, 2003.
[10] J. P. Zheng, K. L. Jiao, W. P. Shen, W. A. Anderson, and H. S. Kwok, “Highly sensitive photodetector using porous silicon,” Appl. Phys. Lett., vol. 61, no. 4, pp. 459-461, 1992.
[11] Suresh Kumar Dhungel, Jinsu Yoo, Kyunghae Kim, Somnath Ghosh, Sungwook Jung, and Junsin Yi, “Study of electrical properties of oxidized porous silicon for back surface passivation of silicon solar cells,” Renewable Energy, vol. 33, pp. 282-285, 2008.
[12] P. Steiner,F. Kozlowski, and W. Lang, “Blue and Green Electroluminescence from a Porous Silicon Device,” IEEE Electron Device Letters, vol. 14, no. 7, pp. 317-319, 1993.
[13] R. L. Smith, and S. D. Collins, “Porous silicon formation mechanisms,” J. Appl. Phys., vol. 71, no. 8, pp. R1-R22, 1992.
[14] A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys., vol. 82, no. 3, pp. 909-965, 1997.
[15] L. T. Canham, T. I. Cox, A. Loni, A. J. Simons, “Progress towards silicon optoelectronics using porous silicon technology,” Applied Surface Science, vol. 102, pp. 436-441, 1996.
[16] A. J. Steckl and J. P. Li, ”Epitaxial Growth of β-SiC on Si by RTCVD with C3H8 and SiH4,” IEEE Transactions on Electron Devices, vol. 39, pp. 64-74, 1992
[17] W.D. Kingery, H.K. Bowen, D.R. Uhlmann, and R. Frieser, “Introduction to Ceramics,” Journal of The Electrochemical Society, vol. 124, p. 152C, Mar. 1977.
[18] W.J. Yang, Y. Choa, T. Sekino, K.B. Shim, K. Niihara, and K.H. Auh, “Thermal stability evaluation of diamond-like nanocomposite coatings,” Thin Solid Films, vol. 434, pp. 49-54, Jun. 2003.
[19] B. Racine, M. Benlahsen, K. Zellama, M. Zarrabian, J.P. Villain, G. Turban, and A. Grosman, “Hydrogen stability in diamond-like carbon films during wear tests,” Appl. Phys. Lett., vol. 75, pp. 3479-3481, Nov. 1999.
[20] V. L. Rideout, “A Review of the Theory, Technology and Applications of Metal-Semiconductor Rectifiers,” Thin Solid Films, vol. 48, pp.261, 1978
[21] S. M. Sze, Semiconductor Devices Physics and Technology, 2nd Edition, Wiley, 2001.
[22] J. B. D. Soole and H. Schumacher, “InGaAs metal-semiconductor-metal photodetectors for long wavelengthoptical communications,” IEEE Journal of Quantum Electronics, vol. 27, pp.737-752, 1991
[23] Y. K. Su, Y. Z. Chiou, C. S. Chang, S. J. Chang, Y. C. Lin, and J. F. Chen, “4H-SiC mteal-semiconductor-metal ultraviolet photodetectors with Ni/ITO electrodes,” Solid-State Electronics, vol. 46, pp.2237-2240, 2002
[24] D. S. Wuu, S. C. Hsu, and R. H. Horng, “Improvements of transparent electrode materials for GaN metal-semiconductor-metal photodetectors,” Journal of Material Science: Materials in Electronics, vol. 15, pp.793-796, 2004
[25] [Online]. Available: http://www.uvp.com/
[26] S.S. Camargo, R.A. Santos, A.L. Baia Neto, R. Carius, and F. Finger, “Structural modifications and temperature stability of silicon incorporated diamond-like a-C:H films,” Thin Solid Films, vol. 332, pp. 130-135, Nov. 1998.
[27] W. Wu and M. Hon, “Thermal stability of diamond-like carbon films with added silicon,” Surface and Coatings Technology, vol. 111, pp. 134-140, Jan. 1999.
[28] H.L. Bai and E.Y. Jiang, “Improvement of the thermal stability of amorphous carbon films by incorporation of nitrogen,” Thin Solid Films, vol. 353, pp. 157-165, Sep. 1999.
[29] A. Uhlir, Jr., “Electrolytic Shaping of Germanium and Silicon,” Bell System Tech. J., vol. 35, pp. 333-347, 1956.
[30] G. C. John, and V. A. Singh, “Diffusion-induced nucleation model for the formation of porous silicon,” Physical Review B, vol. 52, no. 15, pp. 125-131, 1995.
[31] K. Imai, and S. Nakajima, “Full isolation technology by porous oxidized silicon and its application to LSIs,” International Electron Devices Meeting, vol. 27, pp. 376-379, 1981.
[32] L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett., vol. 57, no. 10, pp. 1046-1048, 1990.
[33] V. Lehmann, and U. Gosele, “Porous silicon formation: A quantum wire effect,” Appl. Phys. Lett., vol. 58, no. 8, pp. 856-858, 1991.
[34] M. I. J. Beale, N. G. Chew, M. J. Uren, A. G. Cullis, and J. D. Benjamin, “Microstructure and formation mechanism of porous silicon,” Appl. Phys. Lett., vol. 46, no. 1, pp. 86-88, 1985.
[35] M. I. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew and A. G. Cullis, “The formation of porous silicon by chemical stain etches,” J. Cryst. Growth, vol. 75, no. 3, pp. 408-414, 1986.
[36] I. M. Young, M. I. J. Beale, and J. D. Benjamin, “X-ray double crystal diffraction study of porous silicon,” Appl. Phys. Lett., vol. 46, no. 12, pp. 1133-1135, 1985.
[37] A. Halimaoui, C. Oules, G. Bomchil, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, and F. Muller, “Electroluminescence in the visible range during anodic oxidation of porous silicon films,” Appl. Phys. Lett., vol. 59, no. 15, pp. 304-306, 1991.
[38] T. L. Lin, L. Sadwick, K. L. Wang, Y. C. Kao, R. Hull, C. W. Nieh, D. N. Jamieson, and J. K. Liu, “Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon,” Appl. Phys. Lett., vol. 51, no. 11, pp. 814-816, 1987.
[39] Z. Liu, B. Q. Zong, Z. Lin, “Diamond growth on porous silicon by hot-filament chemical vapor deposition,” Thin Solid Films, vol. 254, pp. 3-6, 1995.
[40] V. Aroutiounian, K. Martirosyan, A. Hovhannisyan, and P. Soukiassian, “Use of porous silicon for double- and triple-layer antireflection coatings in silicon photovoltaic converters,” Journal of Contemporary Physics (Armenian Academy of Sciences), vol. 43, Apr. 2008, pp. 72-76.
[41] K. Ait-Hamouda, A. Ababou, M. Ouchabane, N. Gabouze, S. Belhousse, H. Menari, and K. Beldjilali, “Study of optical properties of diamond-like carbon/porous silicon antireflective coating layers for multicrystalline silicon solar cell applications,” Vacuum, vol. 81, pp. 1472-1475, Aug. 2007.
[42] Y. Fan, J. Ju, W. Zhang, Y. Xia, Z. Wang, Z. Fang, and L. Wang, “A new passivation method for porous silicon,” Solid State Communications, vol. 120, Nov. 2001, pp. 435-437.
[43] X. Cheng, M. Zhang, X. Chen, and C. Chen, “Fabrication and performance of optoelectronic devices with metal/diamond-like carbon Schottky contact,” Solid-State Electronics, vol. 51, pp. 423-427, Mar. 2007.
[44] W. Jiang, J. Ahn, C.Y. Chuen, and L.Y. Loy, “Conceptual development and characterization of a diamond-based ultraviolet detector,” Review of Scientific Instruments, vol. 70, pp. 1333-1340, Feb. 1999.
[45] B. Druz, I. Zaritskiy, Y. Yevtukhov, A. Konchits, M. Valakh, B. Shanina, S. Kolesnik, I. Yanchuk, and Y. Gromovoy, “Diamond-like carbon films: electron spin resonance (ESR) and Raman spectroscopy,” Diamond and Related Materials, vol. 13, pp. 1592-1602, Sep. 2004.
[46] A. Grill, “Electrical and optical properties of diamond-like carbon,” Thin Solid Films, vol. 355-356, pp. 189-193, Nov. 1999.
[47] F.Z. Cui and D.J. Li, “A review of investigations on biocompatibility of diamond-like carbon and carbon nitride films,” Surface and Coatings Technology, vol. 131, pp. 481-487, Sep. 2000.
[48] R. Kalish, Y. Lifshitz, K. Nugent, and S. Prawer, “Thermal stability and relaxation in diamond-like-carbon. A Raman study of films with different sp[sup 3] fractions (ta-C to a-C),” Appl. Phys. Lett., vol. 74, pp. 2936-2938, May. 1999.
[49] A.H. Lettington, “Applications of diamond-like carbon thin films,” Carbon, vol. 36, 1998, pp. 555-560.
[50] K. Yokota, M. Tagawa, A. Kitamura, K. Matsumoto, A. Yoshigoe, and Y. Teraoka, “Hydrogen desorption from a diamond-like carbon film by hyperthermal atomic oxygen exposure,” Applied Surface Science, vol. 255, pp. 6710-6714, Apr. 2009.
[51] F. Atchison, B. Blau, M. Daum, P. Fierlinger, P. Geltenbort, M. Gupta, R. Henneck, S. Heule, M. Kasprzak, A. Knecht, M. Kuzniak, K. Kirch, M. Meier, A. Pichlmaier, R. Reiser, B. Theiler, O. Zimmer, and G. Zsigmond, “Measurement of the Fermi potential of diamond-like carbon and other materials,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 260, pp. 647-656, Jul. 2007.