簡易檢索 / 詳目顯示

研究生: 陳東文
Chen, Dong-Wun
論文名稱: 以"油-界面活性劑-水"微乳液為模板製備囊泡狀中孔洞材料
Synthesis of Mesocellular Foams Using “Oil-Surfactant-Water” Emulsion as Template.
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 108
中文關鍵詞: 囊泡狀中孔洞材料中孔洞陳東文碳材界面活性劑林弘萍微乳液化學
外文關鍵詞: MCF, Dong-Wun, l36911108, H.P. Lin, mesoporous, carbon, Mesocellular Foams, chemistry, surfactant, emulsion
相關次數: 點閱:112下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   囊泡型態的中孔洞材料具有低密度、熱穩定的特性,因此常被用於熱絕緣體、電絕緣體、催化劑載體、物質吸收體、藥物傳導控制劑、或是雙分子分離物體。大部分的合成方法是建立在生物成礦的想法------有機模板分子間的自組合(self- assemble),產生特殊形狀,無機物再逐漸附著上去,而造成堅硬的結構。本實驗利用「油(甲苯)-界面活性劑(例:P123)-水」型態的微乳液(emulsion)作為有機模板,再藉由矽酸鈉的聚合作用(condensation)形成骨架,經過100 ℃水熱反應(hydrothermal reaction)處理,合成出囊泡型中孔洞材料。本實驗反應條件分別以改變甲苯量、 pH值、水含量與矽酸鈉組成比例等來研究囊泡型中孔洞材料的變化。反應結果則以穿透式電子顯微鏡、氮氣吸附/脫附曲線來獲得囊泡型中孔洞材料的型態與表面積等資料。此外,本實驗再採用嫁接-萃取法進行表面修飾,將直接合成好的囊泡型中孔洞材料與帶疏水性甲基的矽烷化合物反應,同時完成有機模板之萃取。應用上,將鍛燒後的囊泡型中孔洞材料當作固體模板,讓酚醛樹酯填入孔洞中,加熱到900 ℃,進行碳化,再利用HF(aq)洗掉氧化矽模板部分,形成中孔洞碳材。

      Mesoporous materials with hollow morphologies form low-density, thermally and mechanically stable materials that have possible applications as thermal and electrical insulators, catalysts, adsorbents, controlled drug-delivery agents, solid template and bimolecular separators.
    In this experimental, we synthesize mesoporous silica foams with high uniformity in size via a facile and efficient approach by using” oil (for example:toluene)-surfactant (for example:P123)-water” emulsion as template. We studied the effects of pH value, different silica/ surfactant /toluene/water compositions on the morphologies and mesostructural of the mesoporous silica foams. The structural characterizations of mesoporous silica foams were obtained with TEM images and nitrogen adsorption - desorption isotherms. The silica foams possess the advantages of high surface area, large porosity and tunable pore size as well as the typical mesoporous materials. In addition, we modify the silica foams with the desired silanes to change the surface property.
    In application, we also propose a convenient way to prepare mesoporous carbons of different mesostructure with various mesostructural silica templates by using the cheap carbon source of PF resin. Due to the presence of the additional hydroxyl-methyl groups (–CH2OH) in the PF resin, the PF oligomers can behave as a multi-chelating polymer-chain to interact strongly with the silanol groups on the mesoporous silica templates via the hydrogen-bonding interaction. Thus, the PF oligomers can be homogeneously encapsulated in or coated on the mesopores of the silica templates via a simple drying process. After carbonization at 900℃and the process of etching silica with HF(aq), we can get mesoporous carbon spheres or mesoporous carbon foams.

    第一章 緒 論.................................................................1 1.1 奈米科技.................................................................1 1.2 奈米現象.................................................................2 1.3 孔洞材料原理介紹.........................................................4 1.4 界面活性劑性質簡介.......................................................7 1.4.1 分子結構...............................................................7 1.4.2 界面活性劑的分類.......................................................8 1.4.3 微胞的形成.............................................................9 1.4.4 雙性塊狀共聚高分子(Amphiphilic block copolymer).....................11 1.4.5 塊狀高分子的微胞......................................................11 1.4.6 三塊狀共聚高分子......................................................12 1.5 矽酸鹽的化學概念........................................................13 1.6 一般中孔洞材料的形成機制................................................14 1.7 微乳液..................................................................17 1.8 表面修飾................................................................19 1.9 表面修飾後的中孔洞分子篩應用............................................23 第二章 實驗部分.............................................................26 2.1 化學藥品................................................................26 2.2 樣品合成方法............................................................28 2.2.1 囊泡狀中孔洞材料(Mesocellular Foams;MCF)合成方法...................28 2.2.2 表面修飾之方法........................................................28 2.2.3 中孔洞碳材合成方法....................................................29 2.3 產物的鑑定..............................................................30 2.3.1 X-射線粉末繞射光譜(Powder X-ray Diffraction;PXRD)..................30 2.3.2 穿透式電子顯微鏡(Transmission Electron Microscopy;TEM).............30 2.3.3 熱重分析儀(Thermogravimetn’c analysis;TGA)........................30 2.3.4 氮氣等溫吸附脫附測量(N2 adsorption-desorptionisotherm)..............31 第三章 囊泡狀中孔洞材料合成及表面修飾之探討.................................37 A、囊泡狀中孔洞材料 3.1 研究動機與目的..........................................................37 3.2 實驗設計................................................................38 3.3 結果與討論..............................................................38 3.3.1 MCF的合成與鑑定.......................................................38 3.3.2 改變擴孔劑(Toluene)的量對MCF的影響..................................42 3.3.3 水熱反應造成的影響....................................................49 3.3.4 改變pH值的影響........................................................52 3.3.5 矽酸鈉在pH=5.0的聚合時間(aging time)對MCF的影響....................55 3.3.6 乳化時間的影響........................................................58 3.3.7 改變微乳液的含水量....................................................60 3.3.8 改變矽酸鈉濃度........................................................62 3.3.9 不同的有機擴孔劑......................................................64 3.3.9.1 1,3,5-trimethylbenzene(TMB).......................................64 3.3.9.2 Ethyl Acetate(EA).................................................65 3.3.9.3 Toluene + Ethyl Acetate............................................66 3.3.9.4 Toluene + Salad oil................................................67 3.3.10 不同的界面活性劑.....................................................68 3.3.10.1 PE64(EO13PO30EO13)...............................................68 3.3.10.2 F127(EO106PO70EO106).............................................69 3.3.10.3 P1210(C18 Oleyl-(EO)10)..........................................72 3.3.10.4 C16TMAB(C19H42NBr)...............................................76 B、中孔洞材料之表面修飾 3.4 研究動機與目的..........................................................78 3.5 實驗設計................................................................78 3.6 結果與討論..............................................................79 3.6.1 用乙醇萃取界面活性劑的效果............................................79 3.6.2 表面修飾的效果........................................................80 第四章 囊泡狀中孔洞材料應用於中孔洞碳材之探討...............................82 4.1 研究動機與目的..........................................................82 4.2 實驗設計................................................................84 4.3 結果與討論..............................................................84 4.3.1 C-MCF與CMK-1、CMK-3及Wormhole-like mesoporous carbon比較..............84 4.3.2 改變不同酚醛樹酯濃度..................................................89 4.3.3 以規則性排列的中孔洞材料當作固態模板合成中孔洞碳材....................95 4.3.3.1 以P123-0.6 g Toluene-H2O系統合成規則性排列的結構當作固態模板........96 4.3.3.2 以P1210 -EA-H2O系統合成出的規則性排列結構當作固態模板...............98 4.3.4 其他形態的中孔洞碳材.................................................100 第五章 結論................................................................101 參考文獻...................................................................104

    1. S. Bhatia, Zeolite catalysis principles and application, CRC press, Florida,1990.
    2. B. Imelik, Y. Naccache, J. Bentaaiit, J. C. Vedrine, G. Coudurier, H. Praliaud, Catalysis by zeolite, Elesevier, Amostordam, 1980.
    3. W. J. Ward, Molecular sieve catalysts in applied industrial catalysis, Vol. 3, Academic press, New York, 1984.
    4. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 359, 710 (1992).
    5. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc., 114, 10834 (1992).
    6. A. Sayari, Chem. Mater., 8, 1840, (1996).
    7. R. Neumann, K. Khenkin, Chem. Commun., 23, 2643 (1996).
    8. B. Charkraborty, A. C. Pulikottil, B. Viswanathan, Catal. Lett., 39, 63 (1994).
    9. M. Hartmann, A. Popll, L. Kenvan, J. Phys. Chem., 100, 9906 (1996).
    10. A. Corma, M. T. Navarro, J. Perez-Pariente, F. Sanchez, Stud. Surf. Sci. Catal. 84, 69 (1994).
    11. J. S. Reddy, A. Sayari, J. Chem. Soc., Chem. Commun., 2231 (1995).
    12. C.-G. Wu, T. Bein, Science, 264, 1757 (1994)..
    13. C.-G. Wu, T. Bein, Science, 266, 1013 (1994).
    14. C.-G. Wu, T. Bein, Chem. Mater., 6, 1109 (1994).
    15. (a) Y. S. Lee, D. Surjadi, J. F. Rathman, Langmuir, 12, 6202 (1996).
    (b) C. H. Ko, R. Raoo, J. Chem. Soc., Chem. Comunn., 2467 (1996).
    16. S. C. Tsang, J. J. Davis, M. L. H. Green., H. A. O. Hill, Y. C. Leung, P. J. Sadler, J. Chem. Soc., Chem. Commun., 1803 (1995).
    17. T. Abe, Y. Tachibana, T. Uemtsu, M. Iwamoto, J. Chem. Soc., Chem. Commun., 1617 (1995).
    18. M. J. Adeogun, J. N. Hay, Chemistry of Materials, 12(3), 767 (2000).
    19. P. Behrens, G. D. Stucky, Angew. Chem. Int. Ed. Engl., 32, 696 (1993).
    20. S. Mann, Angew. Chem. Int. Ed., 39, 3392 (2000).
    21. N. Kröger, R. Deutzmann, M. Sumper, Science, 286, 1129 (1999)
    22. E. G. Vrieling, T. P. M. Beelen, R. A. van Santon, W. W. C. Gieskes, Angew. Chem. Int. Ed., 41, 1543 (2002).
    23. T. F. Todros, Surfactants, Academic Press : London, 1984.
    24. B. Lindman and H. Wennerström, Micelles : Amphiphile Aggregation in Aqueous Solution, Springer-Verlag, Heidelberg, 1980.
    25. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc. 120, 6024 (1998).
    26. R. K. Iler, The Chemistry of Silica , John Wiley, New York, 1979.
    27. J. C. Vartuli, C. T. Johnson, M. E. Leonowicz, A. S. Chu, S. B. McCullen, I. D. Johnson, E. W. Sheppard, Chem. Mater., 6, 2070 (1994).
    28. C. Y. Chen, S. L. Burkett, H. C. Li, M. E. David, Microporous Mater., 2, 27 (1993).
    29. A. Steel, S. W. Carr, M. W. Anderson, J. Chem. Soc., Chem. Commun., 1571 (1994).
    30. A. Monnier, F. Schuth, Q. Huo, D. Kumar, D. Margolese, R. S. Maxwell, G. D. Stucky, M. Krishnamurity, P. Petroff, A. Firouzi, M. Janicke, B. F. Chmelka, Science, 261, 1299 (1993).
    31. A. Firouzi, D. Kumar, L. M. Bull, T. Besier, P. Sieger, Q. Huo, S. A. Walker, J. A. Zasadzinski, C. Glinda, J. Nicol, D. Margolese, G. D. Stucky, B. F. Chemelka, Science, 825 (1995).
    32. K. Holmberg, B. Jönsson, B. Kronberg and B. Lindman, Surfactants and Polymers in Aqueous Solution, Wiley Press, England, 2002.
    33. A. Sayari, J. Phys. Chem. B, 102(28), 5503 (1998).
    34. H. P. Lin, Y. R. Cheng and C. Y. Mou, Chem. Mater., 10, 3773 (1998).
    35. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredickson, B. F. Chmelka, G. D. Stucky, Science, 279, 548 (1998).
    36. M. S. Morey, G. D. Stucky, S. Schwarz, M. Frböa, J. Phys. Chem. B, 103, 2037 (1999).
    37. H. C. Foley, J. Microporous Mater., 4, 407 (1995).
    38. X. Feng, G. E. Fryxell, L. Q. Wang, A. Y. Kim, J. Liu, K. M. Kemner, Science, 276, 923 (1997).
    39. W. M. Van Rhijn, D. E. De Vos, B. F. Sels, W. D. Bossaert and P. A. Jacobs, Chem. Commun., 3, 317 (1998).
    40. J. F. Diaz, K. J. Balkus, F. Bedioui, V. Kurshev, L. Kevan, Chem. Mater., 9, 61 (1997).
    41. K. Mollar, T. Bein, R. X. Fischer, Chem. Mater., 11(3), 665 (1999).
    42. Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schuth, G. D. Stucky, Nature, 368, 317 (1994)
    43. P. T. Tanev, T. J. Pinnavaia, Science, 267, 865 (1995).
    44. R. Ryoo, S. H. Joo, M. Kruk and M. Jaroniec, Adv. Mater., 13(9), 677 (2001).
    45. P. Schmidt-Winkel, W. W. Jr. Lekens, D. Y. Zhao, P. Yang, B. F. Chmelka and G. D. Stucky, J. Am. Chem. Soc., 121, 254 (1999).
    46. Q. Sun, P. J. Kooyman, J. G. Grossmann, P. H. H. Bomans, P. M. Frederik, P. C. M. M. Magusin, T. P. M. Beelen, R. A. van Santen, N. A. J. M. Sommerdijk, Adv. Mater., 15(3), 1097 (2003).
    47. D. L. Wilcox, M. Berg, Mater. Res. Soc. Symp. Proc., 372, 3 (1995).
    48. H. P. Lin, Y. R. Cheng, C. Y. Mou, Chem. Mater., 10, 3772 (1998).
    49. K. J. C. v. Bommel, J. H. Jung, S. Shinkai, Adv. Mater., 13, 1472 (2001).
    50. M. Kruk, M. Jaroniec and A. Sayari, J. Phys. Chem. B, 103, 4590 (1999).
    51. J. R. Matos, M. Kurk, L. P. Mercuri, M. Jaroniec, L. Zhao, T. Kamiyama, O. Terasaki, T. J. Pinnavaia and Y. Lin, J. Am. Chem. Soc., 125, 821 (2003).
    52. J. S. Lettow, Y. J. Han, P. Schmidt-Winkel, P. Yang, D, Zhao, G. D. Stucky and J. Y. Ying, Langmuir, 16, 8291 (2000).
    53. C. G. Göltner, B. Smarsly, B. Berton and M. Antonietti, Chem. Mater., 13, 1617 (2001).
    54. M. Y. Kozlov, N. S. Melik-Nubarov, E. V. Batrakova and A. V. Kabanov, Macromolecular, 33, 3305 (2000).
    55. C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York 1988.
    56. T. Kyotani, Carbon, 38, 269 (2000).
    57. J. H. Knox, B. Kaur, G. R. Millward, J. Chromatogr., 352, 3 (1986).
    58. M. Kruk, M. Jaroniec, R. Ryoo and S. H. Joo, J. Phys. Chem. B., 104, 7960 (2000).
    59. J. Lee, K. Sohn and T. Hyeon, Chem. Comm., 2674 (2002).
    60. W. W. Lukens and G. D. Stucky, Chem. Mater., 14, 1665 (2002).
    61. J. Lee, K. Sohn and T. Hyeon, J. Am. Chem. Soc., 123, 5146 (2001).
    62. 柯清水,新世紀化工化學大辭典,1578頁。
    63. N. Kasahara, S. Shiraishi, A. Oya, Carbon, 41, 1645 (2002).
    64. J. Hayashi, M. Uchibayashi, T. Horikawa, K. Muroyama and V. G. Gomes, Carbon, 40, 2747 (2002).
    65. D. Zhao, J. Sun, Q. Li and G. D. Stucky, Chem. Mater., 12, 275 (2000)

    下載圖示 校內:立即公開
    校外:2004-07-13公開
    QR CODE