| 研究生: |
陳世明 Chen, Shih-Ming |
|---|---|
| 論文名稱: |
高效率高昇壓直流轉換器之分析與設計 Analysis and Design of High-Efficiency High Step-Up DC Converters |
| 指導教授: |
梁從主
Liang, Tsorng-Juu 陳建富 Chen, Jiann-Fuh |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 高昇壓轉換器 、切換電容技術 、耦合電感 |
| 外文關鍵詞: | high step-up converter, switched-capacitor, coupled-inductor |
| 相關次數: | 點閱:191 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
開發與利用再生能源已是全球經濟發展的首要課題,然而有效轉換再生能源以供應電力至市電或負載,亦為電力轉換器技術重點發展的一環。本論文提出並探討四種新型具有高昇壓比、高效率直流-直流功率轉換器架構。架構一係利用串接式架構組合一個新型二次昇壓功率轉換器來實現高昇壓應用;其昇壓比可達輸入電壓的20倍,最高效率為92.1 %。架構二係以架構一為基礎再加入電壓倍增技術而衍生另一高昇壓轉換器,並可進一步降低開關責任週期與耦合電感匝數比,使得最高效率提昇至93.2 %。架構三與架構四則以耦合電感轉換器結合切換電容技術以實現高昇壓比、高效率功率轉換器;藉耦合電感二次側聯結方式不同,可分為昇壓順向式和昇壓反馳式兩種。其進一步提昇最高功率轉換效率分別為96.4 % 和 96.3 %,較二次昇壓型功率轉換器有顯著提昇。以上四種功率轉換器皆具有三種共同特性;首先,皆為單開關驅動方式,且不須高變壓器匝數比和責任週期;第二為漏感能量皆能有效地回收並傳送到負載;第三為漏感抑制切換電容上的湧浪電流大小。這些特性架構出高效率與高昇壓功率轉換器的主要模式。內文中分別就上述四種高昇壓轉換器做詳細的穩態電路分析、電壓增益推導、和分析耦合電感中激磁電感於連續、非連續、以及邊界工作條件。在此耦合電感被定義為結合激磁電感、漏感和一理想變壓器之元件。依分析結果,設計並實作上述四種高昇壓轉換器的硬體電路,且經由實際電路量測數據與波形圖來驗證理論分析。而上述四種高昇壓比直流-直流轉換器之實測結果與理論推導相符,高昇壓比及高轉換效率直流-直流轉換器已於本論文中被實現與驗證。
Renewable resource development and utilization is most important subject for globe economic. However, effectively converts renewable energy to electricity or supply load by high efficiency power converter technology also becoming increasingly important. In this dissertation, four high step-up conversion ratio converters are proposed. Based on cascading input and coupled-inductors to form a novel quadratic boost converter is proposed. The voltage gain of this type of converter has 20 times the voltage of regular input, with a maximum efficiency of 92.1 %. To reduce duty and turn ratios, the quadratic boost converter applies the voltage multiplier technique, thereby performing at a higher maximum efficiency of 93.2 %. By integrating the switched-capacitor technique and coupled-inductor technology, thereby forming two switched-capacitor step-up converters, the boost-forward and the boost-flyback converters achieve maximum efficiency of up to 96.4 % and 96.3 %, respectively. These converters have common essential characteristics. First, both require single active-switch driving, and both do not need extreme duty and turn ratio values. Second, the leakage energy of the coupled-inductor is efficiently recycled to the load. Third, the inrush current problem among switched-capacitors is constrained by the leakage inductance. These features are the main reasons behind the high efficiency and high voltage conversion ratio performance of the proposed model. In this study, the coupled-inductor is defined as a device configures magnetizing inductance, leakage inductance, and an idea transformer. The operating principles and steady-state analyses of continuous conduction mode (CCM), discontinuous conduction mode (DCM), and boundary conduction mode (BCM) are discussed in detail. Moreover, all the prototype converters are used respectively to verify and demonstrate their performances.
[1] R. H. Lasseter, “MicroGrids,” IEEE Power Engineering Society Winter Meeting, 2002, vol. 1, pp. 305-308.
[2] C. L. Smallwood, “Distributed generation in autonomous and nonautonomous micro grids,” Proc. IEEE Rural Electric Power Conf., May 2002, pp. D1-D1_6.
[3] J. M. Carrasco, L.G. Franquelo, J.T. Bialasiewicz, E. Galvan, R.C.P. Guisado, M.A.M. Prats, J.I. Leon, and N. Moreno-Alfonso, “Power-electronic systems for the grid integration of renewable energy sources: A survey,” IEEE Trans. Power Electron., vol. 53, no. 4, pp. 1002-1016, Aug. 2006
[4] Y. W. Li and C. N. Kao, “An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid,” IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2977-2988, Dec. 2009.
[5] N. Pogaku, M. Prodanovic, and T.C. Green, “Modeling, analysis and testing of autonomous operation of an inverter-based microgrid,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 613-625, Mar. 2007.
[6] E. M. Fleming, I. A. Hiskens, “Dynamic of a mircogrid supplied by solid oxide fuel cells,” Proc. IEEE, iREP Symposium 2007, pp. 1-10.
[7] A. Kwasinski and P. T. Krein, “A microgrid-based telecom power system using modular multiple-input DC-DC converters,” Proc. IEEE INTELEC Conf., 2005, pp. 515-520.
[8] J. M. Correa, F. A. Farret, N. Canha and M.G. Simoes, “An electrochemical-based fuel-cell model suitable for electrical engineering automation approach,” IEEE Trans. Ind. Electron., vol. 51, no. 5, pp. 1103-1112, Oct. 2004.
[9] Z. Jiang and R.A. Dougal, “A compact digitally controlled fuel cell/battery hybrid power source,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1094-1104, Aug. 2006.
[10] S. M. Lukic, J. Cao, R.C. Bansal, F. Rodriguez and A. Emadi, “Energy storage systems for automotive applications,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2258-2267, Jun. 2008.
[11] H. Tao, J.L. Duarte and M. A. M. Hendrix, “Line-interactive UPS using a fuel cell as the primary source,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 3012-3021, Aug. 2008.
[12] M. W. Ellis, M. R. V. Spakovsky, and D. J. Nelson, “Fuel cell systems: Efficient, flexible energy conversion for the 21st century,” Proc. IEEE, vol. 89, no. 12, pp. 1808-1818, Dec. 2001.
[13] C. Wang, M. H. Nenrir, and S. R. Shaw, “Dynamic models and model validation for PEM fuel cells using electrical circuits,” IEEE Trans. Energy Convers., vol. 20, no. 2, pp. 442-451, June 2005.
[14] J. Selvaraj, N. A. Rahim, “Multilevel Inverter for Grid-Connected PV System Employing Digital PI Controller,” IEEE Trans. Ind. Electron., vol. 56, No.1, pp. 149-158, 2009.
[15] L. S. Yang, T. J. Liang, and J. F. Chen, “Transformerless DC-DC converters with high step-up voltage gain,” IEEE Trans. Ind. Electron., vol. 56, no.8, pp. 3144-3152, Aug. 2009.
[16] K. C. Tseng and T. J. Liang, “Novel high-efficiency step-up converter,” Proc. IEE Electric Power Appl., vol. 151, no. 2, pp. 182-190, Mar. 2004.
[17] Q. Zhao and F. C. Lee, “High-efficiency, high step-up DC-DC converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 65-73, Jan. 2003.
[18] K. B. Park, H. W. Seong, H. S. Kim, G. W. Moon, and M. J. Youn, “Integrated boost-SEPIC converter for high step-up applications,” Proc. IEEE PESC, 2008, pp. 944-950.
[19] J. Y. Lee and S. N. Hwang, “Non-isolated high-gain boost converter using voltage-stacking cell,” Electron. Lett., vol. 44, no. 10, pp. 644–645, May. 2008.
[20] F. L. Luo and H. Ye, “Positive output super-lift converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 105–113, Jan. 2003.
[21] R. J. Wai and R. Y. Duan, “High-efficiency DC/DC converter with high voltage gain,” Proc. Inst. Elect. Eng.–Electric Power Appl. 2005, vol. 152, no. 4, pp. 793–802.
[22] R. J. Wai and R. Y. Duan, “High step-up converter with coupled-inductor,” IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1025–1035, Sep. 2005.
[23] R. J. Wai, C. Y. Lin, R. Y. Duan and Y. R. Chang, “High efficiency DC-DC converter with high voltage gain and reduced switch stress,” IEEE Trans. Ind. Electrons., vol. 54, no. 1, pp. 354–364, Feb. 2007.
[24] P. Marcos, L.P. Luciano, E. Gustavo, F. R. Eduardo, and G. Roger, “Voltage Multiplier Cells Applied to Non-Isolated DC–DC Converters” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 871-887, March 2008.
[25] J. W. Baek, M. H. Ryoo, T. J. Kim, D. W. Yoo, and J. S. Kim, “High boost converter using voltage multiplier,” Proc. IEEE IECON, 2005, pp. 567-572.
[26] R. Sharma and H. Cao, “Low cost high efficiency DC-DC converter for fuel cell powered auxiliary power unit of a heavy vehicle,” IEEE Trans. Power Electron., vol. 21, no. 3, pp. 587–597, May 2006.
[27] J. Wang F. Z. Peng, J. Anderson, A. Joseph and R. Buffenbarger, “Low cost fuel cell converter system for residential power generation,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1315–1322, Sep. 2004.
[28] S. J. Finney, B. W. Williams, and T. C. Green, “RCD snubber revisited,” IEEE Trans. Ind. Appl., vol. 32, no. 1, pp. 155–160, Jan./Feb. 1996.
[29] T. F. Wu, Y. S. Lai, J. C. Hung and Y. M. Chen, “Boost converter with coupled inductors and buck-boost type active clamp,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 154–162, Jan. 2008.
[30] D. D. C. Lu, D. K.W. Cheng, and Y. S. Lee, “A single-switch continuous conduction- mode boost converter with reduced reverse-recovery and switching losses,” IEEE Trans. Ind. Electron., vol. 50, no. 4, pp. 767–776, Aug. 2003.
[31] C. M. C. Duarte, and I. Barbi, “An improved family of ZVS-PWM active-clamping DC-to-DC converters,” IEEE Trans. Power Electron., vol. 17, no. 1, pp. 1–7, Jan. 2002.
[32] Y. S. Lee, and B. T. Lin, “Adding active clamping and soft switching to boost-flyback single-stage Isolated power-factor-corrected power supplies,” IEEE Trans. Power Electron., vol. 12, no. 6, pp. 1017–1027, Nov. 1997.
[33] S.H. Park, S.R. Park, J.S. Yu, Y.C. Jung, and C.Y. Won, “Analysis and design of a soft-switching boost converter with an HI-Bridge auxiliary resonant circuit,” IEEE Trans. Power Electron., vol. 25, no. 8, pp.2142-2149, Aug. 2010.
[34] C.J. Tseng and C.L. Chen, “Novel ZVT-PWM converters with active snubbers,” IEEE Trans. Power Electron., vol. 13, no. 5, pp. 861-869, Sep. 1998.
[35] N. P. Papanikolaou and E. C. Tatakis, “Active voltage clamp in flyback converters operating in CCM mode under wide load variation,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 632-640, Jun. 2004.
[36] B. R. Lin and F. Y. Hsieh, “Soft-switching zeta-flyback converter with a buck–boost type of active clamp,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2813-2822, Oct. 2007.
[37] F. Zhang and Y. Yan, “Novel forward-flyback hybrid bidirectional DC-DC converter,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1578-1584, May 2009.
[38] B. Axelrod, Y. Berkovich, and A. Ioinovici, “Switched-capacitor / switched-inductor structures for getting transformerless hybrid DC-DC PWM converters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 2, pp. 687-696, Mar. 2008.
[39] F. L. Luo, “Switched-capacitorized DC/DC converters,” Proc. IEEE ICIEA, 2009, pp. 1074-1079.
[40] O. Abutbul, A. Gherlitz, Y. Berkovich, and A. Ioinovici, “Step-up switching-mode converter with high voltage gain using a switched-capacitor circuit,” IEEE Trans. Syst. I, Fundam. Theory Appl., vol. 50, no. 8, pp. 1098-1102, Aug. 2003.
[41] G. Zhu and A. Ioinovici “Switched-capacitor power supplies: DC voltage ratio, efficiency, ripple, regulation,” Proc. IEEE ISCAS, 1996, pp.553-556.
[42] F. L. Luo and H. Ye, “Positive output multiple-lift push-pull switched-capacitor Luo-converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 594-602, Jun. 2004.
[43] F. L. Luo, “Six self-lift DC–DC converters, voltage lift technique,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1268-1272, Dec. 2001.
[44] D. Zhou, A. Pietkiewicz, and S. Cuk, “A three-switch high-voltage converter,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 177-183, Jan. 1999.
[45] L. S. Yang, T. J. Liang, and J. F. Chen, “Transformerless DC-DC converters with high step-up voltage gain,” IEEE Trans. Ind. Electron., vol. 56, no.8, pp. 3144-3152, Aug. 2009.
[46] B. Axelrod, Y. Berkovich, A. Ioinovici, “Transformerless DC-DC converters with a very high DC line-to-load voltage ratio,” Proc. IEEE ISCAS, 2003, vol.3, pp. 435-438.
[47] B. Axelrod, Y. Berkovich, S. Tapuchi, A. Ioinovici, “Steep conversion ration Ćuk, Zeta, and SEPIC converters based on a switched coupled-inductor cell,” Proc. IEEE PESC, 2008, pp. 3009-3014.
[48] T. Umeno, K. Takahashi, F. Ueno, T. Inoue, and I. Oota, “A new approach to low ripple-noise switching converters on the basis of switched- capacitor converters,” Proc. IEEE Int. Symp. Circuits Systems, June 1991, pp. 1077–1080.
[49] H. Chung and Y. K. Mok, “Development of a switched-capacitor dc–dc boost converter with continuous input current waveform,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 46, no. 6, pp. 756–759, Jun. 1999.
[50] Abutbul, A. Gherlitz, Y. Berkovich, and A. Ioinovici, “Step-up switching-mode converter with high voltage gain using a switched- capacitor circuit,” IEEE Trans. Syst. I, Fundam. Theory Appl., vol. 50, no. 8, pp. 1098–1102, Aug. 2003.
[51] S. C. Tan, S. Bronstein, M. Nur, Y. M. Lai, A. Ioinovici, and C. K. Tse, “Variable Structure Modeling and Design of Switched-Capacitor Converters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 9, pp. 2132–2142, Sep. 2009.
[52] G. Zhu and A. Ioinovici “Switched-capacitor power supplies: DC voltage ratio, efficiency, ripple, regulation,” Proc. IEEE ISCAS, 1996, pp.553– 556.
[53] S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang, “Novel high step-up DC–DC converter for fuel cell energy conversion system,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2007-2017, June 2010.
[54] O. Krykunov, “Analysis of the extended forward converter for fuel cell applications,” Proc. IEEE ISIE Conf. 2008, pp. 661–666.
[55] Y. J. A. Alcazar, R. T. Bascope, D. S. de Oliveira, E. H. P. Andrade and W. G. Cardenas, “High voltage gain boost converter based on three-state switching cell and voltage multipliers,” Proc. IEEE IECON Conf., 2008, pp. 2346–2352.
[56] M.G. Ortiz-Lopez, J. Leyva-Ramos, E.E. Carbajal-Gutierrez, J.A. Morales-Saldana, “Modeling and analysis of switch-mode cascade converters with a single active switch” IET Trans. Power Electron., vol. 1, no. 4, pp. 478-487, 2008.
[57] Y. de Novaes, A. Rufer, I. Barbi, “A New Quadratic, Three-Level, DC/DC Converter Suitable for Fuel Cell Applications” Proc. IEEE PCCON Conf., 2007, pp. 601–607.
[58] D. Maksimovic and S. Cuk, “Switching converters with wide DC conversion range,” IEEE Trans. Power Electron., vol. 6, pp. 377–390, Jan. 1991.
[59] J. Leyva-Ramos, M.G.Ortiz-Lopez, L.H.Diaz-Saldierna, and J.A. Morales-Saldana, “Switching regulator using a quadratic boost converter for wide DC conversion ratios,” IET Power Electron., vol. 2, no. 5, pp. 605–613, Sep. 2009.
[60] J. A Morales-Saldan˜a., E.E.Carbajal Gutierrez, J.Leyva-Ranos:”Modeling of switch-mode DC–DC cascade converters,” IEEE Trans. Aerosp. Electron. Syst., vol.38, no.1, pp. 295–299, Jan. 2002.
[61] J. A. Morales-Saldana, R. Galarza-Quirino, J. Leyva-Ramos, E. E. Carbajal-Gutierrez, and M.G. Ortiz-Lopez, “Multiloop controller design for a quadratic boost converter,” IET Electric Power Applications, vol. 1, no. 3, pp. 362-367, Jan. 2007.
[62] C. S. Leu and S. Y. Wu, “A novel single-switch high conversion ratio DC-DC converter,” Proc. IEEE PEDS, 2009, pp. 1097-1101.
[63] L. H. S. C. Barreto, E. A. A. Coelho, V.J. Farias, L. C. de Freitas, and J.B. Vieira Jr., “An Optimal Lossless Commutation Quadratic PWM Boost Converter,” Proc. IEEE APEC, 2002, pp. 624 – 629.
[64] Y. Zhao, W. Li, Y. Deng, X. N. He, S. Lambert, and V. Pickert, “High step-up boost converter with coupled inductor and switched capacitor,” Proc. IET PEMD, 2010, pp. 1–6.