| 研究生: |
洪偉勝 Hung, Wei-Sheng |
|---|---|
| 論文名稱: |
泵驅動環路熱管性能實驗研究 An experimental study of thermal performances for pump-assisted loop heat pipes |
| 指導教授: |
張始偉
Chang, Shyy-Woei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 環路熱管 、強制汽液二相流 |
| 外文關鍵詞: | Loop Heat Pipe, Forced Vapor-Liquid Two Phase Flow |
| 相關次數: | 點閱:124 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗研究探討以R245fa做為工作流體,藉由毛細力及泵驅動之兩組環路熱管傳熱性能。藉由調整加熱功率、冷凝器之冷卻條件以及工作流體流量,分別改變沸騰數(Bo)、冷凝器熱阻(Rth,cond)以及雷諾數(Re),探討沸騰數、冷凝器熱阻以及雷諾數對兩環路熱管啟動性能、循環壓力、熱力循環特徵、蒸發器與冷凝器紐賽數(Nusselt number)以及環路總熱阻之個別與耦合效應。實驗數據證明,提高汽液循環速率及改善環路壓損特性,提升泵驅動環路熱管之熱傳性能,相較於僅以毛細力驅動之環路熱管,本研究亦探討使用泵驅動環路熱管之熱傳性能提升物理機制。為降低流體阻力,本研究將蒸發器內部之毛細結構以陣列結構取代,並將傳統之管鰭式冷凝器,改用管式冷凝器,探討使用陣列結構之蒸發器與管式冷凝器,對泵驅動環路熱管傳熱性能產生之影響。本研究迴歸各環路熱管之總熱阻實驗數據,推導兩組總熱阻實驗公式,評估環路熱管於各沸騰數、冷凝器熱阻及雷諾數之總熱阻,有助於工程上應用。
The present experimental study investigated the thermal performances of two loop heat pipes (LHP) that were respectively driven by capillary force along and combined capillary and pumping forces with R245fa as working fluid. The start-up performance, loop pressures, thermodynamic cycles, evaporator and condenser Nusselt numbers, and total thermal resistances affected by boiling number (Bo), condenser thermal resistance, and Reynolds number (Re) were examined by adjusting heating power, cooling condition of condenser and flow rate of working fluid. For improving the thermal performance of the pump-driven LHP, the matrix type evaporator and the newly devised condenser were adopted to replace the conventional capillary type evaporator and tube-fin condenser. The comparative thermal performances between the present pump driven LHP and the pump-assisted conventional capillary LHP were studied. Two sets of empirical correlations that evaluated the total thermal resistances of the present pump driven LHP and the pump-assisted conventional capillary LHP were generated to assist the relevant engineering applications.
[1] Y.F. Maydanik, “Review Loop Heat Pipes”, Applied Thermal Engineering, vol.25, pp. 635–657, 2005.
[2] Z. Liu, D. Gai, H. Li, W. Liu, J. Yang, M. Liu, “Investigation of Impact of Different Working Fluids on the Operational Characteristics of Miniature LHP With Flat Evaporator”, Applied Thermal Engineering, vol. 31, pp. 3387–3392, 2011.
[3] R. Singh, A. Akbarzadeh, M. Mochizuki, “Effect of Wick Characteristics on the Thermal Performance of the Miniature Loop Heat Pipe”, ASME J. Heat Transfer, vol.131 , pp.082601-1~10, 2009.
[4] Y. F. Maydanik, M. Chernysheva and V. Pastukhov, “Review: Loop Heat Pipes With Flat Evaporators”, Applied Thermal Engineering, vol.67, pp.294–307, 2014.
[5] D. Wang, Z. Liu, S. He, J. Yang, W. Liu, “Operational Characteristics of a Loop Heat Pipe With a Flat Evaporator and Two Primary Biporous Wicks”, International J. Heat and Mass Transfer, vol.89 , 33-41, 2015.
[6] J.H. Ambrose, A.R. Feild, H.R. Holmes, “A Pumped Heat Pipe Cold Plate For High-Flux Applications”, Experimental Thermal Fluid Science, vol.10 , pp.156–162, 1995.
[7] S. W. Chang, K. Feng Chiang, “Heat Pipe Structure”, US Patent US 2011/0088872 A1, 2011.
[8] P. Zhang, X. Weia, L. Yana, H. Xua, T. Yang, “Review of Recent Developments on Pump-Assisted Two-Phase Flow Cooling Technology”, Applied Thermal Engineering, vol.150, pp.811–823, 2019.
[9] M. Crepinsek, C. Park, “Effect of Operational Conditions on Cooling Performance of Pump-Assisted and Capillary-Driven Two-Phase Loop”, J. Thermophysics and Heat Transfer, vol.25 , pp.572–580, 2011.
[10] M. Crepinsek, C. Park, “Experimental Analysis of Pump-Assisted And Capillary-Driven Dual-Evaporators Two-Phase Cooling Loop”, Applied Thermal Engineering, vol.38, pp.133–142, 2012.
[11] Z. Zhang, X.H. Sun, G.N. Tong, Z.C. Huang, Z.H. He, A. Pauw, J. van Es, R. Battiston, S. Borsini, E. Laudi, B. Verlaat, C. Gargiulo, ”Stable and Self-Adaptive Performance of Mechanically Pumped CO2 Two-Phase Loops for AMS-02 Tracker Thermal Control in Vacuum”, Applied Thermal Engineering, vol. 31, pp. 3783–3791 ,2011.
[12] C. Jiang, W. Liu, H.C. Wang, D.D. Wang, J.G. Yang, J.Y. Li, Z.C. Liu, “Experimental Investigation of Pump-Assisted Capillary Phase Change Loop”, Applied Thermal Engineering, vol.71, pp.581–588, 2014.
[13] R.V. Bejarano, C. Park, “Active Flow Control For Cold-Start Performance Enhancement of a Pump-Assisted, Capillary-Driven, Two-Phase Cooling Loop”, Int. J. Heat and Mass Transfer, vol.78, pp. 408–415, 2014.
[14] C. Jiang, Z. Liu, D. Wang, J. Yang, H. Wang, J. Li, W. Liu, “Effect of Liquid Charging Process on the Operational Characteristics of Pump-Assisted Capillary Phase Change Loop”, Applied Thermal Engineering, vol.91, pp. 953–962, 2015.
[15] S. Zhang, G. Ma, F. Zhou, “Experimental Study on a Pump Driven Loop-Heat Pipe For Data Center Cooling”, ASCE J. Energy Engineering, vol.141, pp.04014054-1~8, 2015.
[16] F. Zhou, C. Wei, G. Ma, “Development and Analysis of a Pump-Driven Loop Heat Pipe Unit For Cooling a Small Data Center”, Applied Thermal Engineering, vol.124, pp.1169–1175, 2017.
[17] F. Zhou, W. Duana, G. Ma, “Thermal Performance of a Multi-Loop Pump-Driven Heat Pipe as an Energy Recovery Ventilator for Buildings”, Applied Thermal Engineering, vol.138, pp.648–656, 2018.
[18] C. Jiang, W. Liu, Z. Liu, J.Yang, B. Duan, X. Luo, “Startup Characteristics of Pump-Assisted Capillary Phase Change Loop”, Applied Thermal Engineering, vol.126, pp.1115–1125,2017.
[19] I. Setyawan, N. Putra, I.I Hakim, “Experimental Investigation of the Operating Characteristics of a Hybrid Loop Heat Pipe Using Pump Assistance”, Applied Thermal Engineering, vol.130, pp.10–16, 2018.
[20] M. Lee and C. Park, “Mechanical-Capillary-Driven Two-Phase Loop: Numerical Modeling and Experimental Validation”, International J. Heat and Mass Transfer, vol.125, pp. 972–982, 2018.
[21] J.H. Kim, T.W. Simon, R. Viskanta, “Journal of Heat Transfer Policy on Reporting Uncertainties in Experimental Measurements and Results”, ASME J. Heat Transfer, vol.115, pp.5–6, 1993.
[22] P. R. Parida, M. D. Schultz, T. Chainer, “Sim2Cool: A Two-Phase Cooling System Simulator and Design Tool, 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)”, San Diego, CA, USA, 29 May-1 June 2018.