| 研究生: |
許喬凱 Hsu, Ciao-Kai |
|---|---|
| 論文名稱: |
利用坍度試驗推估泥砂漿體的流變參數 Assesment of Rheological Parameters of a Sediment-mixture Slurry by using the Slump Test |
| 指導教授: |
詹錢登
Jan, Chyan-Deng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 賓漢流體模式 、流變參數 、坍度實驗 |
| 外文關鍵詞: | Bingham model, Rheological parameters, Slump test |
| 相關次數: | 點閱:75 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究進行泥砂漿體的流變實驗及坍度實驗,探討其流變參數與坍度參數間的關聯性。流變實驗所使用之流變計為DV-III型水平旋轉式流變計,坍度實驗所使用之坍度儀為國家CNS標準規格之等比例縮小模具(平截圓錐體),其頂端直徑為5 cm,底端直徑為10 cm,高度為15 cm。實驗使用的泥砂漿體材料有兩種高嶺土漿體及水庫淤泥漿體。高嶺土及水庫淤泥的中值粒徑為0.0048 mm及0.0036 mm。實驗採用25%、27.5%、30%、32.5%及35%五種體積濃度;再以體積濃度30%之高嶺土及水庫淤泥二種細泥砂漿體為基底,加入不同含量之粗顆粒(玻璃珠及砂顆粒,其平均粒徑皆約為1 mm),調配成30%、40.5%、44%、47.5%及51%五種體積濃度之混合泥砂漿體,並分別求其流變特性及坍度特性。
流變實驗結果顯示,細泥漿體與混合泥砂漿體在低剪切率(20 s-1以下)時之流變特性大致符合賓漢流體模式。同時其流變參數(賓漢屈服應力及黏滯係數)會受到漿體濃度與粗顆粒的影響而有所不同,其濃度愈高,流變參數值愈大。坍度實驗結果顯示,細泥漿體隨著體積濃度的增加,坍流直徑及坍落度會逐漸減少;而混合泥砂漿在體積濃度含量在到達某一臨界量體時,粗顆粒才會對坍流直徑及坍落度造成較明顯之影響。綜觀兩實驗結果得知,細泥漿體在體積濃度25%至35%;混合泥砂漿體在粗顆粒含量為15%至30%時,將流變參數及坍度參數之關係做線性迴歸,其線性趨勢之r2的平均值為0.91。因此細泥漿體及混合泥砂漿體皆可以利用坍度實驗來推估流變參數。
This study investigated the relationships of the rheological parameters with respect to slump parameters for the materials of sediment-mixture slurry. Rheological parameters of sediment-mixture slurry were measured from laboratory experiments using the DV-III horizontal rotary rheometer. Slump parameters were measured from slump test through slump cone of the national standard of CNS down scaling mold (i.e., top diameter of 5 cm, the bottom diameter 10 cm, height 15 cm ). Sediment materials used in this study are kaolin soil and reservoir sedimentation with median diameters of 0.0048 mm and 0.0036 mm, respectively. Here we proportioned five sediment volume concentration of kaolin soil and reservoir sedimentation with 25%, 27.5%, 30%, 32.5% and 35% for rheological and slump experiments. Based on the, we also added coarse particles (with mean diameter of 1 mm) into those above mentioned slurry samplings that were further proportioned into volume concentration of 30%, 40.5%, 44%, 47.5% and 51% of sediment-mixture slurries to characterize the effect of coarse particles on its corresponding rheological and slump properties.
Rheological experimental results show that mud slurries and sediment-mixture slurries used in this study can be attributed as the Bingham fluid under a low shear rate. Rheological parameters (i.e., yield stress and viscosity) are affected by the concentration of slurry and coarse particles, indicating that the higher the concentration, the greater the value of the rheological parameters. On the other hand, slump test show that the slump diameters and slump heights of mud slurries decrease with increase in its corresponding volume concentration but coarse particles can only significantly affect slump diameters and slump heights of slurries when their volume concentration were higher than a threshold. Also, we established linear relationships between the parameters of rheology and slump for the mud slurries with volume concentration of 25% to 35% and sediment-mixture slurries with volume concentration of 15% to 30%, showing the determined coefficient r2 averages 0.91. These patterns indicates that slump parameters of sediment materials (i.e, slump diameters and slump heights) can be used to evaluate its corresponding rheological parameters.
1. 王裕宜、詹錢登、嚴璧玉(2001),「泥石流體結構和流變特性」,湖南科學技術出版社。
2. 王裕宜、詹錢登、韓文亮、鄒仁元(2003),「粘性泥石流體應力本構關係之試驗研究」,自然災害學報,第12 卷,第二期,第64-70 頁,中國。
3. 王裕宜(2006),「粘性泥石流體的應力應變特徵和應力本構關係之研究」,山地學報,第24 卷,第5 期,第555-561 頁。
4. 王志賢(2000),「粗顆粒材粒對土石流體流變特性影響之實驗研究」,國立成功大學水利及海洋工程研究所碩士論文。
5. 王志賢(2007),「泥砂顆粒組成對黏性土石流體流變參數影響之研究」,國立成功大學水利及海洋工程研究所博士論文。
6. 沈壽長(1998),「土石流流變特性的試驗研究」,水利學報,第9 期,第7-13頁,中國。
7. 郭啟文(2002),「泥漿體及礫石泥漿體之流變特性」,國立成功大學水利及海洋工程研究所碩士論文。
8. 吳積善、康志成、田連權、章書成(1990),「雲南蔣家溝土石流觀測研究」,
9. 科學出版社,北京。
10. 詹錢登(2000),「土石流概論」,科技圖書股份有限公司。
11. 詹錢登、張雅雯、郭峰豪、羅偉誠(2009),「固體顆粒對賓漢流體流變參數之影響」,中華水土保持學報,第40 卷,第1 期,第95-104 頁。
12. 詹錢登、郭峰豪、郭啓文(2009),「泥漿體應力鬆弛特性之實驗研究」,農業工程學報,第55 卷,第3 期,第65-74 頁。
13. 詹錢登、余昌益、吳雲瑞(1997),「含砂濃度對含砂水體流變參數的影響之初步研究」,第一屆土石流研討會論文集,第179-190 頁,台灣。
14. 張雅雯(2008),「固體顆粒和Carbopol 940 漿體混合後之流變特性」,國立成功大學水利及海洋工程研究所碩士論文。
15. 蔡孟芳(2009),「非均勻固體顆粒對賓漢流體流變參數之影響」,國立成功大學水利及海洋工程研究所碩士論文。
16. 余昌益(1996),「高含砂水流流變參數之研究」,國立成功大學水利及海洋工程研究所碩士論文。
17. 費祥俊(1983),「高含砂水流的顆粒組成及流動特性」,第二屆河流泥砂國際學術研討會,第296-308 頁。
18. 費祥俊(1993),「黃河中下游含砂水流粒度的計算模型」,黃河高含砂水流運動規律及應用前景,科學出版社,第1-19 頁,中國。
19. 費祥俊(1994),「漿體與粒狀物料輸送水力學」,清華大學出版社,中國。
20. 胡小芳、蘇志學(2006),「改進式坍落度筒法測定新拌混凝土流變性能」,混凝土,第64-69 頁,中國。
21. 趙建會、劉浪(2015),「基於坍落度的充填膏體流變特性研究」,西安建築科技大學學報,自然科學版,第192-198 頁,中國。
22. Bagnold, R. A. (1954), Experiments on a gravity-free dispersion of large solid sphers in a Newtonian fluid under shear, Proc. of the Royal Society of London, A255, pp. 49-63.
23. Coussot, P. (1997), Mudflow Rheology and Dynamics. International Association for Hydraulic Research, Netherlands.
24. Coussot, P. and Boyer, S. (1995), Determination of yield stress fluid behavior from inclined plane test. Rheologica Acta, Vol. 34, No. 6, pp. 534-543.
25. Coussot, P. and Piau, J. (1994), On the behavior of fine mud suspensions. Rheologica Acta, Vol. 33, No. 3, pp. 175-184.
26. Coussot, P. and Piau, J. M., (1995a), The effects of an addition of force-free particles on the rheological properties of fine suspensions. Canadian Geotechnical Journal, Vol. 32, pp. 263-270.
27. Coussot, P. and Piau, J. M., (1995b), A large-scale field coaxial cylinder rheometer for the study of the rheology of natural coarse suspensions. Journal of Rheology, Vol. 39, No. 1, pp. 105-124.
28. Coussot, P., Laigle, D., Arattano, M., Deganutti, A., and Marchi, L. (1998), Direct determination of rheological characteristics of debris flow. Journal of Hydraulic Engineering, Vol. 124, No. 8, pp. 865-868.
29. Coussot, P., Nguyen, Q. D., Huynh, H. T., and Bonn, D. (2002). Avalanche behavior in yield stress fluids. Physical review letters, Vol. 88, No. 17,175501-1-175501-4.
30. Hanes, D. M., and Inman, D. L. (1985), Observations of rapidly flowing franular-fluid materials. Journal of Fluid Mechanics, Vol. 150, pp. 357-380.
31. Jinglong G. and Andy F.(2014) , Spread is better An investigation of the mini-slump test. Minerals Engineering, Vol. 71, pp. 120-132.
32. Major, J. J. and Pierson, T. C.(1992), Debris flow rheology: experiment analysis of fine-frained slurries. Water Resources Research, Vol. 28, No. 3, pp. 841-857.
33. Mangesana, N., Chikuku, R. S., Mainza, A. N., Govender, I. van der Westhuizen, A. P., and Narashima, M.(2008), The effect of particle sizes and solids concentration on the rheology of silica sand based suspensions The Journal of The Southern African Institute of Mining and Metallurgy, Vol. 108, pp. 237-245.
34. Martino, R. (2003), Experimental analysis on the rheological properties of a debris flow deposit. Proceedings of the 3rd International Conference on Debris-flow Hazards Mitigation, Davos, Switzerland, pp. 363~371.
35. O’Brien, J. S. and Julien, P. Y.(1988), Laboratory analysis of mudflowproperities, Journal of Hydraulic Engineering, ASCE, Vol. 114, No. 8, pp. 877-887
36. Phillips, C. J. and Davies, T. R. H. (1991), Determining rheological parameter of debris flow material. Geomorphology, Vol. 4, pp. 101-110.
37. Savage, S. B. and McKeown, S.(1983), Shear stresses developed during rapid shear of concentrated suspensions of large spherical particles between concentric cylinders, Journal of Fluid Mechanics, Vol. 127, pp. 453-472.
38. Savage, S. B. and Sayed, M.(1984), Stresses developed by dry cohesionless granular materials sheared in an annular shear cell, Journal of Fluid Mechanics, Vol. 142, pp. 391-430.
39. Schatzmann, M. (2005), Rheometry for large particle fluids and debris flow. PhD. Thesis, Swiss Federal Institute of Technology Zurich.
40. Schatzmann, M., Fisher, P., and Bezzola, G. R. (2003), Rheological behavior of fine and large particle suspensions. Journal of Hydraulic Engineering, Vol.129, No.10, pp.796-803.
41. Takahashi, T. (1978), Mechanical characteristics of debris flow. Journal of Hydraulic Engineering, Vol. 104(HY8), pp. 1153-1169.
校內:2021-08-02公開