簡易檢索 / 詳目顯示

研究生: 莊惠評
Chuang, Hui-Ping
論文名稱: 鑑別前列腺環素致效劑對於PMA誘導HEL細胞分化特性影響之研究
Characterization of prostacyclin agonists induced cell differentiation from phorbol ester treated human erythroleukemia cells.
指導教授: 簡偉明
Kan, Wai-Ming
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 82
中文關鍵詞: 分化前列腺環素
外文關鍵詞: differentiation, prostacyclin
相關次數: 點閱:139下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   棘狀細胞 (dendritic cells; DC) 是免疫系統中一種特殊的抗原呈獻細胞 (antigen presenting cells; APC),其於成熟 (maturation) 後會由周邊組織移動至淋巴器官中呈獻外來抗原給T淋巴球辨識,進而誘發抗原專一性免疫反應。Human erythroleukemia(HEL)細胞為一株表現功能性prostacyclin (IP) 接受器的細胞株,具有erythoid (紅血球) 、 monocytic (單核球) 及megakaryocytic (巨核細胞) 三種細胞表現型態的特性,因此常被用來研究這三種細胞型態的分化,其於PMA處理後,則會分化成類單核球/巨噬細胞 (monocyte/macrophage like cells) 及增加巨核細胞的分化。
      過去本實驗室發現,以Prostacyclin致效劑beraprost、iloprost、carbaprostacyclin或BMY45778刺激HEL細胞時,會改變PMA誘導HEL細胞分化後的型態,產生貼壁之類棘狀細胞及抑制懸浮態之巨核細胞分化。此類棘狀細胞的型態與myeloid dendritic cells及KG-1細胞所衍生出之類棘狀細胞之型態相似。經由表面抗原分析實驗得知,經IP致效劑處理4天後的PMA誘導之類單核球/巨噬細胞,會增加棘狀細胞專一性標誌 (CD83) 及HLA-DR的表現且輔助刺激分子CD80也會表現很多。此外,在吞噬功能實驗, HEL細胞經PMA處理過後,加入IP 致效劑所誘導產生之棘狀細胞的吞噬能力比單獨投予PMA分化產生的類單核球/巨噬細胞低,且加入前列腺環素致效劑於PMA誘導之類單核球/巨噬細胞後也會增加T細胞刺激的能力,此為成熟棘狀細胞的特色。
      此外,由DNA染色實驗及細胞表面抗原分析實驗結果得知,IP致效劑會抑制PMA誘導之細胞核內多倍體增加,以及降低巨核細胞專一性標誌CD41的表現,且加入cAMP類似物於PMA誘導之巨核細胞,同樣會造成上述之現象,因此得知IP致效劑會透過IP接受體去連結腺核苷酸鹽環化酶 (adenylyl cyclase ;AC) 進而增加細胞內cAMP的量,使得PMA誘導之巨核細胞分化受到抑制。

      Dendritic cells (DCs) are professional antigen presenting cells (APCs) of the immune system. After maturation, DCs migrate from peripheral tissues to the lymphoid organs and are highly effective at presenting foreign antigens (Ag) to naïve T cells, thereby inducing Ag-specific immune response. Human erythroleukemia (HEL) cells is a pluripotent cell line with functional prostacyclin (IP) receptors. It is often used to study of erythroid, monocyte or megakaryocyte differentiation. It is well known that HEL cells will differentiate into monocytic/macrophage-like cells and increase megakaryocytic differentiation after phorbol ester (PMA) treatment.
      In this study, IP agonists (beraprost, iloprost, carbaprostacyclin) and specific IP partial agonist, BMY45778 induced dendrite outgrowth with nodes and inhibited megakaryocytic differentiation from PMA-treated HEL cells. The morphology of these differentiated dendritic like cells are similar to that of myeloid dendritic cells or KG1 cells-derived dendritic like cells. Phenotypic analysis of the DC associated surface marker in PMA-treated HEL cells and beraprost stimulated PMA-treated HEL cells revealed that, IP agonists up-regulated membrane expression of DC phenotypic surface antigens CD83 and HLA-DR and expressed large amount of costimulatory molecule CD80. Moreover IP agonists also reduced the phagocytic activities of the PMA-treated HEL cells for both FITC-dextran and FITC-BSA while T cells stimulatory abilities were also enhanced after prostacyclin agonists treatment which are the characteristics of mature dendritic cells.
      Moreover IP agonists inhibited the nuclear polyploidy and down-regulated the expression of megakaryocyte specific marker CD41 from DNA stain analysis and phenotypic analysis. Treatment of cAMP analogues also inhibited the appearance of megakaryocytic differentiation induced by PMA. Therefore, from the results, we suggest that IP agonists may through to activate IP receptor to activation of adenylyl cyclase and elevation of the intracellular cAMP level to inhibit PMA induced megakaryocytic differentiation of HEL cells.

    致謝 中文摘要 1 英文摘要 3 符號與縮寫 5 壹.諸論 8 貳.實驗設計 17 參.實驗材料與方法:一. 材料 21 二. 方法 23 肆.實驗結果 33 伍.討論 40 陸.參考文獻 47 柒.圖表 54 自述 82

    1. Banchereau J. and Steinman RM. Dendritic Cells and the Control of Immunity. Nature 392, 245-251, 1998.
    2. Pierre P., Turley SJ., Gatti E., Hull M., Meltzer J., Mirza A., Inaba K., Steinman RM. and Mellman I. Developmental Regulation of MHC class II Transport in Mouse Dendritic Cells. Nature 388, 787-792, 1997.
    3. Faries MB., Bedrosian I., Xu S., Koski G., Roros JG., Moise MA., Nguyen HQ., Eegels FC., Cohen PA. and Czerniecki BJ. Calcium Signaling Inhibits Interleukin-12 Production and Activates CD83+ Dendritic Cells that Induce Th2 Cell Development. Blood 98, 2489-2497, 2001.
    4. Warren MK., Rose WL., Cone JL., Rice WG. and Turpin JA. Differential Infection of CD34+ Cell-Derived Dendritic Cells and Monocyte-Tropic HIV-1 Strains. J. Immunol. 158, 5035-5042, 1997.
    5. Smyth MJ., Godfrey DI. and Trapani JA. A Fresh Look at Tumor Immunosurveillance and Immunotherapy. Nature Immunology 2, 293-299, 2001.
    6. Biragyn A. and Kwak LW. Designer Cancer Vaccines Are Still in Fashion. Nature Medicine 6, 966-968, 2000.
    7. Nestle FO. Dendritic Cell Vaccination for Cancer Therapy. Oncogene 19, 6673-6679, 2000.
    8. Hart DJ. Dendritic Cells: Unique Leukocyte Populations Which Control the Primary Immune Response. Blood 90, 3245-3287, 1997.
    9. Shortman K. and Liu YJ. Mouse and Human Dendritic Cell Subtypes. Nature Immunology. 2, 151-161, 2002.
    10. Despars G. and O’Neill HC. A Role for Niches in the Developmant of A Multiplicity of Dendritic Cell Subsets. Exp. Hematol. 32, 235-243, 2004.
    11. Davis TA., Saini AA., Blair PJ., Levine BL., Craighead N., Harian DM., June CH., and Lee KP. Phorbol Easters Induce Differentiation of Human CD34+ Hemopoietic Progenitors to Dendritic Cells: Evidence for Protein Kinase C-Mediated Signaling. Blood 160, 3689-3697, 1998.
    12. Lindner I., Kharfan-Dabaja MA., Ayala E., Kolonias D., Carlson LM., Beazer-Barclay Y., Scherf U., Hnatyszyn JH. and Lee KP. Induced Dendritic Cell Differentiation of Chronic Myeloid Leukemia Blasts Is Associated with Down-Regulation of BCR-ABL. J. Immunol. 171, 1780-1791, 2003.
    13. Ramadan G., Schmidt RE., and Schubert J. In Vitro Generation of Human CD86+ Dendritic Cells from CD34+ Haematopoietic Progenitors by PMA and in Serum-Free Medium. Clin. Exp. Immunol. 125, 237-244, 2001.
    14. Blandine de SV., Isabelle FV., Massacrier C., Gaillard C., Vanbervliet B., Aït-Yahia S., Banchereau J., Liu YJ., Lebecque S. and Caux C. The Cytokine Profile Expressed by Human Dendritic Cells Is Dependent on Cell Subtype and Mode of Activation. J. Immunol. 160, 1666-1676, 1998.
    15. Mellman I. and Steinman RM. Cell 106, 255-258, 2001.
    16. Yanagawa Y. and Onoé K. CCR7 Ligands Induce Rapid Endocytosis in Mature Dendritic Cells with Concomitant Up-Regulation of Cdc42 and Rac Activities. Blood 101, 4923-4929, 2003.
    17. MacDonald KA., Munster DJ., Clark GJ., Dzionek A., Schmitz J. and Hart DN. Characterization of Human Blood Dendritic Cell Subsets. Blood 100, 4512-4520, 2002.
    18. Yanagawa Y. and Onoé K. CCR7 Ligands Induce Rapid Endocytosis in Mature Dendritic Cells with Concomitant Up-Regulation of Cdc42 and Rac Activities. Blood 101, 4923-4929, 2003.
    19. Inaba K., Turley S., Iyoda T., Yamaide F., Shimoyama S., Sousa CR., Germain RN., Mellman I, and Steinman RM. The Formation of Immunogenic Major Histocompatibility Compartments of Dendritic Cells Is Regulated by Inflammatory Stimuli. J. Exp. Med. 191, 927-936, 2000.
    20. Lim H. and Dey SK. Minireview:A Novel Pathway of Prostacyclin Signaling-Hanging Out with Nuclear Receptors. Endocrinology 143, 3207-3210, 2002.
    21. Boie Y., Rushmore TH., Darmon-Goodwin A., Grygorczyk R., Slipetz DM., Metters KM. and Abramovitz M. Cloning and Expression of a cDNA for the Human Prostanoid IP receptor. J. Biol. Chem. 269, 12173-12178, 1994.
    22. Katsuyama M., Sugimoto Y., Namba T., Irie A., Negishi M., Narumiya S. and Ichikawa A. Cloning and Expression of a cDNA for the Human Prostacyclin receptor. FEBS Lett. 344, 74-78, 1994.
    23. Ishikawa TO., Tamai Y., Rochelle JM., Hirata M., Namba T., Sugimoto Y., Ichikawa A., Narumiya S., Taketo MM. and Seldin MF. Mapping of the Genes Encoding Mouse Prostaglandin D, E, and F and Prostacyclin Receptors. Genomics 32, 285-288, 1996.
    24. Smyth EM., Nestor PV. and FitzGerald GA. Agonist-Dependent Phosphorylation of an Epitope-Tagged Human Prostacyclin Receptor. J. Biol. Chem.271, 33698-33704, 1996.
    25. Breyer RM., Bagdassarian CK., Myers SA., and Breyer MD. Prostanoid Receptors: Subtypes and Signaling. Annu. Rev. Pharmacol. Toxicol. 41, 661-690, 2001.
    26. Murata T., Ushikubi F., Matsuoka T., Hirata M., Yamasaki A., Sugimoto Y., Ichikawa A., Aze Y., Tanaka T., Yoshida N., Ueno A., Oh-ishi S. and Narumiya S. Altered Pain Perception and Inflammatory Response in Mice Lacking Prostacyclin Receptor. Nature 388, 678-682, 1997.
    27. Stitham J., Martin KA. and Hwa J. The Critical Role of Transmembrane Prolines in Human Prostacyclin Receptor Activation. Mol. Pharmacol. 61, 1202-1210, 2002.
    28. Wise, H., and Jones, R. L. Prostacyclin and Its Receptors. Kluwer Academic. New York. 2000.
    29. Wize H. Multiple Signalling Options for Prostacyclin. Acta Pharmacol Sin. 24, 625-630, 2003.
    30. Wise H. and Jones RL. Focus on Prostacyclin and its Novel Mimetics. TiPS 17, 17-21, 1996.
    31. Abramovitz M., Adam M., Boie Y., Carrière MC., Denis D., Godbout C., Lamontagne S., Rochette C., Sawyer N., Tremblay NM., Belley M., Gallant M., Dufresne C., Gareau Y., Ruel R., Juteau H., Labelle M., Ouimet N. and Metters KM. The Utilization of Recombinant Prostanoid Receptors to Determine the Affinties and Selectivities of Prostaglandins and Related Analogs. Biochimica et Biophysica Acta 1483, 285-293, 2000.
    32. Kiriyama M., Ushikubi F., Kobayashi T., Hirata M., Sugimoto Y. and Narumiya S. Ligand Binding Specificities of the Eight Types and Subtypes of the Mouse Prostanoid Receptors Expressed in Chinese Hamster ovary Cells. Br. J. Pharmacol. 122, 217-224, 1997.
    33. Takechi H., Matsumura K., Watanabe Y., Kato K., Noyori R., Suzuki M. and Watanabe Y. A Novel Subtype of the Prostacyclin Receptor Expression in the Central Nervous System. J. Biol. Chem. 271, 5901-5906,1996.
    34. Clapp LH., Finney P., Turcato S., Tran S., Rubin LJ. and Tinker A. Differential Effects of Stable Prostacyclin Analogs on Smooth Muscle Proliferation and Cyclic AMP Generation in Human Pulmonary Artery. Am. J. Respir. Cell Mol. Biol. 26, 194–201, 2002.
    35. Seiler SM., Brassard CL., Federici ME., Romine J., Meanwell NA. ﹝3-﹝4-(4,5-Diphenyl-2-Oxazolyl)-5-Oxazoyl﹞Phenoxy﹞Acetic Acid (BMY45778) is a Potent Non-Prostanoid Prostacyclin Partial Agonist: Effects on Platelet Aggregation, Adenylyl Cyclase, cAMP Levels, Protein Kinase, and Iloprost Binding. Prostaglandins 53, 21-35, 1997.
    36. Kiriyama M., Ushikubi F., Kobayashi T., Hirata M., Sugimoto Y. and Narumiya S. Ligand Binding Specificities of the Eight Types and Subtypes of the Mouse Prostanoid Receptors Expressed in Chinese Hamster Ovary Cells. Br. J. Pharmacol. 122, 217-224,1997.
    37. Chu KM., Chow KB., Wong YH. and Wise H. Prostacyclin Receptor-Mediated Activation of Extracellular Signal-Regulated Kinase 1 and 2. Cell Signaling 16, 477-486, 2004.
    38. Belmonate N., Phillips BW., Massiera F., Villageois P., Wdzielonski B., Saint-Marc P., Nichols J., Aubert J., Saeki K., You A., Narumiya S., Ailhaud G. and Dani C. Activation of Extracellular Signal-Regulated Kinases and CREB/ATF-1 Mediated the Expression of CCAAT/Enhancer Binding Proteins β and –δ in Preadipocytes. Molecular Endocrinology 15, 2037-2049, 2001.
    39. Nègrel R. Prostacyclin as A Critical Prostanoid in Adipogenesis. Prostaglandins, Leukotrienes and Essential Fatty Acids 60, 383-386, 1999.
    40. Kam YW., Chow KS. and Wise H. Factors Affecting Prostacyclin Receptor Agonist Efficacy in Different Cell Types. Cell Signalling 13, 841-847, 2001.
    41. Martin P. HEL Cells: A New Human Erythroleukemia Cell Line with Spontaneous and Induced Globin Expression. Science 216, 1233-1235, 1982.
    42. Tsuji T., Waga I., Tezuka K., Kamada M., Yatsunami K. and Kodama H. Integrin β2 (CD18)-Mediated Cell Proliferation of HEL Cells on a Hematopoietic-Supportive Bone Marrow Stromal Cell Line, HESS-5 Cells. Blood 91, 1263-1271, 1998.
    43. Long MW., Heffner CH., Williams JL., Peters C., and Prochownik EV. Regulation of Megakaryocyte Phenotype in Human Erythroleukemia Cells. J. Clin. Invest. 85, 1072-1084, 1990.
    44. Feoktistov, I., Breyer, R. M., Biaggioni, I. Prostanoid Receptor with a Novel
    Pharmacological Profile in Human Erythroleukemia Cells. Biochem. Pharmacol. 54, 917-926, 1997.
    45. Papayannopoulou T., Yokochi T., Nakamoto B. and Martin P. The Surface Antigen Profile of HEL Cells. Globin Gene Expression and Hematopoietic Differentiation , 277-292,1983.
    46. Papayannopoulou T., Yokochi T., Chait A., and Kannagi R. Human Erythroleukemia Cell Line (HEL) Undergoes a Drastic Macrophage-Like Shift With TPA. Blood 62, 832-845, 1983.
    47. Papayannopoulou T., Nakamoto B., Kurachi S., Tweeddale M. and Messner H. Surface Antigenic Profile and Globin Phenotype of Two New Human Erythroleukemia Lines:Characterization and Interpretataions. Blood 72, 1029-1038, 1988.
    48. Berthier R., Chapel A., Schweitzer A., and Andrieux A. β2 Integrins mediate adherent phenotype of human erythroblastic cell lines after phorbol 12-myristate 13-acetate induction. Biochem. J. 309, 491-497, 1995.
    49. Auwerx JH., Chait A., Wolfbauer G.. and Deeb SS. Loss of Copper-Zinc Superoxide Dismutase Gene Expression in Differentiated Cells of Myelo-Monocytic Origin. Blood 74, 1807-1810, 1989.
    50. Berlanga O., Bobe R., Becker M., Murphy G., Leduc M., Bon C., Barry FA., Gibbins JM., Garcia P., Frampton J. and Watson SP. Expression of the Collagen Receptor Glycoprotein VI During Megakaryocyte Differentiation. Blood 96, 2740-2745, 2000.
    51. Yeo E., Furie BC. and Furie B. PADGEM Protein in Human Erythroleukemia Cells. Blood 73, 722-728, 1989.
    52. Zauli G., Bassini A., Catani L., Gibellini D., Celeghini C., Borgatti P., Caramelli E., Guidotti L. and Capitani S. PMA-Induced Megakaryocytic Differentiation of HEL Cells is Accompanied by Striking Modifications of Protein Kinase C Catalytic Activity and Isoform Composition at the Nuclear Level. Br. J. Haematol. 92, 530-536, 1996.
    53. Jiang F., Jia Y., and Cohen I. Fibronectin- and Protein Kinase C-Mediated Activation of ERK/MARK are Essential for Proplateletlike Formation. Blood 99, 3579-3584, 2002.
    54. Sasaki Y., Takahashi T., Tanaka I., Nakamura K., Okuno Y., Nakagawa O., Narumiya S. and Nakao K. Expression of Prostacyclin Receptor in Human Megakaryocytes. Blood 90, 1039-1046, 1997.
    55. Hong Y., Martin JF., Vainchenker W., and Erusalimsky JD. Inhibition of Protein Kinase C Suppresses Megakaryocytic Differentiation and Stimulates Erythroid Differentiation in HEL Cells. Blood 87, 123-131, 1996.
    56. Amico GD., Bianchi G., Bernasconi S., Bersani L., Piemonti L., Sozzani S., Mantovani A. and Allavena P. Adhesion, Transendothelial Migration, and Reverse Transmigration of In Vitro Cultured Dendritic Cells. Blood 92, 207-214, 1998.
    57. Cho YJ., Kim JY., Jeong SW., Lee SB. and Kim ON. Cyclic AMP Induces Activation of Extracellular Signal-Regulated Kinases in HL-60 cells:Role in cAMP-induced Differentiation. Leukemia Research. 27, 51-56, 2003.
    58. Kambayashi T., Wallin RA. and Ljunggren HG. cAMP –elevating agents
    suppress dendritic cell function. J. Leukoc. Biol. 70, 903-910, 2001.
    59. Watanabe T., Yatomi Y., Sunaga S., Miki I., Ishii A., Nakao A., Higashihara M., Seyama Y., Ogura M. and Saito H. Characterization of prostaglandin and thromboxane receptors expressed on a megakaryoblastic leukemia cell line, MEG-01s.
    Blood 78, 2328 – 2336, 1991.
    60. Fichelson S., Freyssinier JM., Picard F., Fontenay-Roupie M., Guesnu M., Cherai M., Gisselbrecht S. and Porteu F. Megakaryocyte Growth and Development Factor-Induced Proliferation and Differentiation Are Regulated by the Mitogen-Activated Protein Kinase Pathway in Primitive Card Blood Hematopoietic Progenitors. Blood 94, 1601-1613, 1999.
    61. Sato T., Ono M., Fujita H., Tanaka N., Tomiyama J., Sakamoto Y., Takano Y.and Morita I. Development of A Liqid Culture System for Megakaryocyte Terminal Differentiation:Fibrinogen Promotes Megakaryocytopoiesis But Not Thrombopoiesis. Br. J. Haematol. 121, 315-323, 2003.
    62. Rondelli D., Lemoli RM., Ratta M., Fogli M., Re F., Curti A., Arpinati M. and Tura S. Rapid Induction of CD40 on a Subset of Granulocyte Colony-Stimulating Factor-Mobilized CD34+ Blood Cells Identifies Myeloid Committed Progenitors and Permits Selection of Nonimmunogenic CD40-Progenitor Cells. Blood 94, 2293-2300, 1999.
    63. Harizi H., Grosset C., and Gualde N. Prostaglandin E2 Modulates Dendritic Cell Function via EP2 and EP4 Receptor Subtypes. J. Leukoc. Biol. 73, 756-763, 2003.
    64. Clarke DL, Giembycz MA, Patel HJ, Belvisi MG. E-ring 8-isoprostanes inhibit ACh release from parasympathetic nerves innervating guinea-pig trachea through agonism of prostanoid receptors of the EP3-subtype. Br J Pharmacol. 141, 600-609, 2004.
    65. Germain RN. MHC-Dependent Antigen Processing and Peptide Presentation:Providing Ligands for T Lymphocyte Activation. Cell 76, 287-299, 1994.
    66. Ackerman AL. and Cresswell P. Regulation of MHC Class I Transport in Human Dendritic Cells and the Dendritic-Like Cell Line KG-1. J. Immunol. 170, 4178-4188, 2003.
    67. Morelli AE. and Thomson AW. Dendritic cells under the spell of prostaglandins. Trends in Immunology 24, 108-111, 2003.
    68. Luft T, Jefford M, Luetjens P, Toy T, Hochrein H, Masterman KA, Maliszewski C, Shortman K, Cebon J, Maraskovsky E. Functionally distinct dendritic cell (DC) populations induced by physiologic stimuli: prostaglandin E(2) regulates the migratory capacity of specific DC subsets. Blood 100, 1362-1372, 2002.
    69. Yu Q, Kovacs C, Yue FY, Ostrowski MA. The role of the p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and phosphoinositide-3-OH kinase signal transduction pathways in CD40 ligand-induced dendritic cell activation and expansion of virus-specific CD8+ T cell memory responses. J. Immunol. 172, 6047-6056, 2004.
    70. Xie J, Qian J, Wang S, Freeman ME 3rd, Epstein J, Yi Q. Novel and detrimental effects of lipopolysaccharide on in vitro generation of immature dendritic cells: involvement of mitogen-activated protein kinase p38. J. Immunol. 171, 4792-4800, 2003.
    71. Zauli G., Bassini A., Vitale M., Gibellini D., Celeghini C., Caramelli E., Pierpaoli S., Guidotti L. and Capitani S. Thrombopoietin Enhances the αIIbβ3-Dependent Adhesion of Megakaryocytic Cells to Fibrinogen or Fibronectin Through PI 3 Kinase. Blood 89, 883-895,1997.
    72. Dekker E., Abel M., Vuurst H., Eys GJ., Akkerman JN. and Heemskerk JW. Biochimica et Biophysica Acta 1643, 85-94, 2003.
    73. Pettiford SM. and Herbst R. The Protein Tyrosine Phosphatase HePTP Regulates Nuclear Translocation of ERK2 and Modulate Megakaryocytic Differentiation of K562 Cells. Leukemia 17, 366-378, 2003.
    74. Cheng T., Wang Y. and Dai W. Transcription Factor egr-1 Is Involved in Phorbol 12-Myristate 13-Acetate-Induced Megakaryocytic Differentiation of K562 Cells. J. Biol. Chem. 269, 30848-30853, 1994.

    下載圖示 校內:2005-07-13公開
    校外:2005-07-13公開
    QR CODE